Loading…
Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification
Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurem...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2021-04, Vol.21 (8), p.2836 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3 |
container_end_page | |
container_issue | 8 |
container_start_page | 2836 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Sikandar, Tasriva Rabbi, Mohammad F Ghazali, Kamarul H Altwijri, Omar Alqahtani, Mahdi Almijalli, Mohammed Altayyar, Saleh Ahamed, Nizam U |
description | Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes. |
doi_str_mv | 10.3390/s21082836 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7c5186e6c32e4ae4b6442c256c5e16a7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7c5186e6c32e4ae4b6442c256c5e16a7</doaj_id><sourcerecordid>2550450616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3</originalsourceid><addsrcrecordid>eNpdkktv1DAURiMEog9Y8AeQJTbtIuBXHHuDBDM8RpqKBS0srTv2zdTTJB7sDBUr_joJU0YtK9v3Hh9d2V9RvGD0tRCGvsmcUc21UI-KYya5LDXn9PG9_VFxkvOGUi6E0E-Lo_EWp4rVx8Xvqxz6NQEyR9ySJULqp_MFDtfRE-g9mcMApEmxI5e3sZyHDvscYg8tOePzc3IB6QZTucScybfgMZbvIaMniw7WmEkTE_kO7c0k_brFsTFrIefQBAfDqHlWPGmgzfj8bj0trj5-uJx9LpdfPi1m75alk8oMJXijqVxVDRi3ooo6QbWgnhkFRiqvvVPIoWJcNUxrp2qmNDDjtWk8VisUp8Vi7_URNnabQgfpl40Q7N9CTGsLaQiuRVu7immFygmOElCulJTc8Uq5CpmCenS93bu2u1WH3mE_JGgfSB92-nBt1_Gn1bTmtTKj4OxOkOKPHebBdiE7bFvoMe6y5RWnWlHD1Ii--g_dxF0aX3-iKiqr8Rsn6nxPuRRzTtgchmHUThGxh4iM7Mv70x_If5kQfwBpBrT6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550450616</pqid></control><display><type>article</type><title>Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sikandar, Tasriva ; Rabbi, Mohammad F ; Ghazali, Kamarul H ; Altwijri, Omar ; Alqahtani, Mahdi ; Almijalli, Mohammed ; Altayyar, Saleh ; Ahamed, Nizam U</creator><creatorcontrib>Sikandar, Tasriva ; Rabbi, Mohammad F ; Ghazali, Kamarul H ; Altwijri, Omar ; Alqahtani, Mahdi ; Almijalli, Mohammed ; Altayyar, Saleh ; Ahamed, Nizam U</creatorcontrib><description>Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21082836</identifier><identifier>PMID: 33920617</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>2D image ; Accuracy ; Aged ; Alzheimer's disease ; Artificial intelligence ; Body measurements ; Cameras ; Classification ; Datasets ; Deep Learning ; Gait ; Garments ; Human body ; Human motion ; Humans ; Image classification ; Indoor environments ; Kinematics ; LSTM ; marker-less video ; Markers ; Mortality ; Movement ; Neural networks ; quasi-periodic pattern ; Two dimensional bodies ; Video data ; Walking ; Walking Speed ; walking speed classification ; walking speed pattern</subject><ispartof>Sensors (Basel, Switzerland), 2021-04, Vol.21 (8), p.2836</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3</citedby><cites>FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3</cites><orcidid>0000-0003-0497-7356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550450616/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550450616?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33920617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sikandar, Tasriva</creatorcontrib><creatorcontrib>Rabbi, Mohammad F</creatorcontrib><creatorcontrib>Ghazali, Kamarul H</creatorcontrib><creatorcontrib>Altwijri, Omar</creatorcontrib><creatorcontrib>Alqahtani, Mahdi</creatorcontrib><creatorcontrib>Almijalli, Mohammed</creatorcontrib><creatorcontrib>Altayyar, Saleh</creatorcontrib><creatorcontrib>Ahamed, Nizam U</creatorcontrib><title>Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes.</description><subject>2D image</subject><subject>Accuracy</subject><subject>Aged</subject><subject>Alzheimer's disease</subject><subject>Artificial intelligence</subject><subject>Body measurements</subject><subject>Cameras</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Gait</subject><subject>Garments</subject><subject>Human body</subject><subject>Human motion</subject><subject>Humans</subject><subject>Image classification</subject><subject>Indoor environments</subject><subject>Kinematics</subject><subject>LSTM</subject><subject>marker-less video</subject><subject>Markers</subject><subject>Mortality</subject><subject>Movement</subject><subject>Neural networks</subject><subject>quasi-periodic pattern</subject><subject>Two dimensional bodies</subject><subject>Video data</subject><subject>Walking</subject><subject>Walking Speed</subject><subject>walking speed classification</subject><subject>walking speed pattern</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAURiMEog9Y8AeQJTbtIuBXHHuDBDM8RpqKBS0srTv2zdTTJB7sDBUr_joJU0YtK9v3Hh9d2V9RvGD0tRCGvsmcUc21UI-KYya5LDXn9PG9_VFxkvOGUi6E0E-Lo_EWp4rVx8Xvqxz6NQEyR9ySJULqp_MFDtfRE-g9mcMApEmxI5e3sZyHDvscYg8tOePzc3IB6QZTucScybfgMZbvIaMniw7WmEkTE_kO7c0k_brFsTFrIefQBAfDqHlWPGmgzfj8bj0trj5-uJx9LpdfPi1m75alk8oMJXijqVxVDRi3ooo6QbWgnhkFRiqvvVPIoWJcNUxrp2qmNDDjtWk8VisUp8Vi7_URNnabQgfpl40Q7N9CTGsLaQiuRVu7immFygmOElCulJTc8Uq5CpmCenS93bu2u1WH3mE_JGgfSB92-nBt1_Gn1bTmtTKj4OxOkOKPHebBdiE7bFvoMe6y5RWnWlHD1Ii--g_dxF0aX3-iKiqr8Rsn6nxPuRRzTtgchmHUThGxh4iM7Mv70x_If5kQfwBpBrT6</recordid><startdate>20210417</startdate><enddate>20210417</enddate><creator>Sikandar, Tasriva</creator><creator>Rabbi, Mohammad F</creator><creator>Ghazali, Kamarul H</creator><creator>Altwijri, Omar</creator><creator>Alqahtani, Mahdi</creator><creator>Almijalli, Mohammed</creator><creator>Altayyar, Saleh</creator><creator>Ahamed, Nizam U</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0497-7356</orcidid></search><sort><creationdate>20210417</creationdate><title>Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification</title><author>Sikandar, Tasriva ; Rabbi, Mohammad F ; Ghazali, Kamarul H ; Altwijri, Omar ; Alqahtani, Mahdi ; Almijalli, Mohammed ; Altayyar, Saleh ; Ahamed, Nizam U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D image</topic><topic>Accuracy</topic><topic>Aged</topic><topic>Alzheimer's disease</topic><topic>Artificial intelligence</topic><topic>Body measurements</topic><topic>Cameras</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Gait</topic><topic>Garments</topic><topic>Human body</topic><topic>Human motion</topic><topic>Humans</topic><topic>Image classification</topic><topic>Indoor environments</topic><topic>Kinematics</topic><topic>LSTM</topic><topic>marker-less video</topic><topic>Markers</topic><topic>Mortality</topic><topic>Movement</topic><topic>Neural networks</topic><topic>quasi-periodic pattern</topic><topic>Two dimensional bodies</topic><topic>Video data</topic><topic>Walking</topic><topic>Walking Speed</topic><topic>walking speed classification</topic><topic>walking speed pattern</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sikandar, Tasriva</creatorcontrib><creatorcontrib>Rabbi, Mohammad F</creatorcontrib><creatorcontrib>Ghazali, Kamarul H</creatorcontrib><creatorcontrib>Altwijri, Omar</creatorcontrib><creatorcontrib>Alqahtani, Mahdi</creatorcontrib><creatorcontrib>Almijalli, Mohammed</creatorcontrib><creatorcontrib>Altayyar, Saleh</creatorcontrib><creatorcontrib>Ahamed, Nizam U</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sikandar, Tasriva</au><au>Rabbi, Mohammad F</au><au>Ghazali, Kamarul H</au><au>Altwijri, Omar</au><au>Alqahtani, Mahdi</au><au>Almijalli, Mohammed</au><au>Altayyar, Saleh</au><au>Ahamed, Nizam U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-04-17</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>2836</spage><pages>2836-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33920617</pmid><doi>10.3390/s21082836</doi><orcidid>https://orcid.org/0000-0003-0497-7356</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-04, Vol.21 (8), p.2836 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7c5186e6c32e4ae4b6442c256c5e16a7 |
source | Publicly Available Content Database; PubMed Central |
subjects | 2D image Accuracy Aged Alzheimer's disease Artificial intelligence Body measurements Cameras Classification Datasets Deep Learning Gait Garments Human body Human motion Humans Image classification Indoor environments Kinematics LSTM marker-less video Markers Mortality Movement Neural networks quasi-periodic pattern Two dimensional bodies Video data Walking Walking Speed walking speed classification walking speed pattern |
title | Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20a%20Deep%20Learning%20Method%20and%20Data%20from%20Two-Dimensional%20(2D)%20Marker-Less%20Video-Based%20Images%20for%20Walking%20Speed%20Classification&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Sikandar,%20Tasriva&rft.date=2021-04-17&rft.volume=21&rft.issue=8&rft.spage=2836&rft.pages=2836-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21082836&rft_dat=%3Cproquest_doaj_%3E2550450616%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550450616&rft_id=info:pmid/33920617&rfr_iscdi=true |