Loading…

Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification

Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurem...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-04, Vol.21 (8), p.2836
Main Authors: Sikandar, Tasriva, Rabbi, Mohammad F, Ghazali, Kamarul H, Altwijri, Omar, Alqahtani, Mahdi, Almijalli, Mohammed, Altayyar, Saleh, Ahamed, Nizam U
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3
cites cdi_FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3
container_end_page
container_issue 8
container_start_page 2836
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Sikandar, Tasriva
Rabbi, Mohammad F
Ghazali, Kamarul H
Altwijri, Omar
Alqahtani, Mahdi
Almijalli, Mohammed
Altayyar, Saleh
Ahamed, Nizam U
description Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes.
doi_str_mv 10.3390/s21082836
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7c5186e6c32e4ae4b6442c256c5e16a7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7c5186e6c32e4ae4b6442c256c5e16a7</doaj_id><sourcerecordid>2550450616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3</originalsourceid><addsrcrecordid>eNpdkktv1DAURiMEog9Y8AeQJTbtIuBXHHuDBDM8RpqKBS0srTv2zdTTJB7sDBUr_joJU0YtK9v3Hh9d2V9RvGD0tRCGvsmcUc21UI-KYya5LDXn9PG9_VFxkvOGUi6E0E-Lo_EWp4rVx8Xvqxz6NQEyR9ySJULqp_MFDtfRE-g9mcMApEmxI5e3sZyHDvscYg8tOePzc3IB6QZTucScybfgMZbvIaMniw7WmEkTE_kO7c0k_brFsTFrIefQBAfDqHlWPGmgzfj8bj0trj5-uJx9LpdfPi1m75alk8oMJXijqVxVDRi3ooo6QbWgnhkFRiqvvVPIoWJcNUxrp2qmNDDjtWk8VisUp8Vi7_URNnabQgfpl40Q7N9CTGsLaQiuRVu7immFygmOElCulJTc8Uq5CpmCenS93bu2u1WH3mE_JGgfSB92-nBt1_Gn1bTmtTKj4OxOkOKPHebBdiE7bFvoMe6y5RWnWlHD1Ii--g_dxF0aX3-iKiqr8Rsn6nxPuRRzTtgchmHUThGxh4iM7Mv70x_If5kQfwBpBrT6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550450616</pqid></control><display><type>article</type><title>Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sikandar, Tasriva ; Rabbi, Mohammad F ; Ghazali, Kamarul H ; Altwijri, Omar ; Alqahtani, Mahdi ; Almijalli, Mohammed ; Altayyar, Saleh ; Ahamed, Nizam U</creator><creatorcontrib>Sikandar, Tasriva ; Rabbi, Mohammad F ; Ghazali, Kamarul H ; Altwijri, Omar ; Alqahtani, Mahdi ; Almijalli, Mohammed ; Altayyar, Saleh ; Ahamed, Nizam U</creatorcontrib><description>Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21082836</identifier><identifier>PMID: 33920617</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>2D image ; Accuracy ; Aged ; Alzheimer's disease ; Artificial intelligence ; Body measurements ; Cameras ; Classification ; Datasets ; Deep Learning ; Gait ; Garments ; Human body ; Human motion ; Humans ; Image classification ; Indoor environments ; Kinematics ; LSTM ; marker-less video ; Markers ; Mortality ; Movement ; Neural networks ; quasi-periodic pattern ; Two dimensional bodies ; Video data ; Walking ; Walking Speed ; walking speed classification ; walking speed pattern</subject><ispartof>Sensors (Basel, Switzerland), 2021-04, Vol.21 (8), p.2836</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3</citedby><cites>FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3</cites><orcidid>0000-0003-0497-7356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550450616/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550450616?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33920617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sikandar, Tasriva</creatorcontrib><creatorcontrib>Rabbi, Mohammad F</creatorcontrib><creatorcontrib>Ghazali, Kamarul H</creatorcontrib><creatorcontrib>Altwijri, Omar</creatorcontrib><creatorcontrib>Alqahtani, Mahdi</creatorcontrib><creatorcontrib>Almijalli, Mohammed</creatorcontrib><creatorcontrib>Altayyar, Saleh</creatorcontrib><creatorcontrib>Ahamed, Nizam U</creatorcontrib><title>Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes.</description><subject>2D image</subject><subject>Accuracy</subject><subject>Aged</subject><subject>Alzheimer's disease</subject><subject>Artificial intelligence</subject><subject>Body measurements</subject><subject>Cameras</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Gait</subject><subject>Garments</subject><subject>Human body</subject><subject>Human motion</subject><subject>Humans</subject><subject>Image classification</subject><subject>Indoor environments</subject><subject>Kinematics</subject><subject>LSTM</subject><subject>marker-less video</subject><subject>Markers</subject><subject>Mortality</subject><subject>Movement</subject><subject>Neural networks</subject><subject>quasi-periodic pattern</subject><subject>Two dimensional bodies</subject><subject>Video data</subject><subject>Walking</subject><subject>Walking Speed</subject><subject>walking speed classification</subject><subject>walking speed pattern</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAURiMEog9Y8AeQJTbtIuBXHHuDBDM8RpqKBS0srTv2zdTTJB7sDBUr_joJU0YtK9v3Hh9d2V9RvGD0tRCGvsmcUc21UI-KYya5LDXn9PG9_VFxkvOGUi6E0E-Lo_EWp4rVx8Xvqxz6NQEyR9ySJULqp_MFDtfRE-g9mcMApEmxI5e3sZyHDvscYg8tOePzc3IB6QZTucScybfgMZbvIaMniw7WmEkTE_kO7c0k_brFsTFrIefQBAfDqHlWPGmgzfj8bj0trj5-uJx9LpdfPi1m75alk8oMJXijqVxVDRi3ooo6QbWgnhkFRiqvvVPIoWJcNUxrp2qmNDDjtWk8VisUp8Vi7_URNnabQgfpl40Q7N9CTGsLaQiuRVu7immFygmOElCulJTc8Uq5CpmCenS93bu2u1WH3mE_JGgfSB92-nBt1_Gn1bTmtTKj4OxOkOKPHebBdiE7bFvoMe6y5RWnWlHD1Ii--g_dxF0aX3-iKiqr8Rsn6nxPuRRzTtgchmHUThGxh4iM7Mv70x_If5kQfwBpBrT6</recordid><startdate>20210417</startdate><enddate>20210417</enddate><creator>Sikandar, Tasriva</creator><creator>Rabbi, Mohammad F</creator><creator>Ghazali, Kamarul H</creator><creator>Altwijri, Omar</creator><creator>Alqahtani, Mahdi</creator><creator>Almijalli, Mohammed</creator><creator>Altayyar, Saleh</creator><creator>Ahamed, Nizam U</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0497-7356</orcidid></search><sort><creationdate>20210417</creationdate><title>Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification</title><author>Sikandar, Tasriva ; Rabbi, Mohammad F ; Ghazali, Kamarul H ; Altwijri, Omar ; Alqahtani, Mahdi ; Almijalli, Mohammed ; Altayyar, Saleh ; Ahamed, Nizam U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D image</topic><topic>Accuracy</topic><topic>Aged</topic><topic>Alzheimer's disease</topic><topic>Artificial intelligence</topic><topic>Body measurements</topic><topic>Cameras</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Gait</topic><topic>Garments</topic><topic>Human body</topic><topic>Human motion</topic><topic>Humans</topic><topic>Image classification</topic><topic>Indoor environments</topic><topic>Kinematics</topic><topic>LSTM</topic><topic>marker-less video</topic><topic>Markers</topic><topic>Mortality</topic><topic>Movement</topic><topic>Neural networks</topic><topic>quasi-periodic pattern</topic><topic>Two dimensional bodies</topic><topic>Video data</topic><topic>Walking</topic><topic>Walking Speed</topic><topic>walking speed classification</topic><topic>walking speed pattern</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sikandar, Tasriva</creatorcontrib><creatorcontrib>Rabbi, Mohammad F</creatorcontrib><creatorcontrib>Ghazali, Kamarul H</creatorcontrib><creatorcontrib>Altwijri, Omar</creatorcontrib><creatorcontrib>Alqahtani, Mahdi</creatorcontrib><creatorcontrib>Almijalli, Mohammed</creatorcontrib><creatorcontrib>Altayyar, Saleh</creatorcontrib><creatorcontrib>Ahamed, Nizam U</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sikandar, Tasriva</au><au>Rabbi, Mohammad F</au><au>Ghazali, Kamarul H</au><au>Altwijri, Omar</au><au>Alqahtani, Mahdi</au><au>Almijalli, Mohammed</au><au>Altayyar, Saleh</au><au>Ahamed, Nizam U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-04-17</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>2836</spage><pages>2836-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33920617</pmid><doi>10.3390/s21082836</doi><orcidid>https://orcid.org/0000-0003-0497-7356</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-04, Vol.21 (8), p.2836
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7c5186e6c32e4ae4b6442c256c5e16a7
source Publicly Available Content Database; PubMed Central
subjects 2D image
Accuracy
Aged
Alzheimer's disease
Artificial intelligence
Body measurements
Cameras
Classification
Datasets
Deep Learning
Gait
Garments
Human body
Human motion
Humans
Image classification
Indoor environments
Kinematics
LSTM
marker-less video
Markers
Mortality
Movement
Neural networks
quasi-periodic pattern
Two dimensional bodies
Video data
Walking
Walking Speed
walking speed classification
walking speed pattern
title Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20a%20Deep%20Learning%20Method%20and%20Data%20from%20Two-Dimensional%20(2D)%20Marker-Less%20Video-Based%20Images%20for%20Walking%20Speed%20Classification&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Sikandar,%20Tasriva&rft.date=2021-04-17&rft.volume=21&rft.issue=8&rft.spage=2836&rft.pages=2836-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21082836&rft_dat=%3Cproquest_doaj_%3E2550450616%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-ad9804b5fa9cb060c30830d196a946d8dc6e2a5126f188c67168a19d89fde5be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550450616&rft_id=info:pmid/33920617&rfr_iscdi=true