Loading…
Short-Term Electricity Load Forecasting Model Based DSARIMA: -
Forecasting short-term electrical load is very important so that the quality of the electrical power supplied can be maintained properly. The study was conducted to measure the results of electrical load forecasting based on parameter estimates and the presentation of time series data. It is importa...
Saved in:
Published in: | International Journal of Electrical, Energy and Power System Engineering Energy and Power System Engineering, 2022-02, Vol.5 (1), p.6-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Forecasting short-term electrical load is very important so that the quality of the electrical power supplied can be maintained properly. The study was conducted to measure the results of electrical load forecasting based on parameter estimates and the presentation of time series data. It is important to manage stationary data, both in terms of mean and variance. Data presentation is done by determining the value of variance through the Box-Cox transformation method and the mean value based on the ACF and PACF plots. This study considers the pattern of electricity consumption which contains double seasonal patterns. The results of previous studies show the electric power prediction model, the DSARIMA model  with a MAPE of 2.06%. The condition of the model used to predict the electrical load still has a tendency not to be normally distributed and it is estimated that there are outliers. Improvements to the AR and MA parameters that meet the standard error tolerance value of 5 percent are increased in this study. The results showed improvement of parameters to predict electrical load with DSARIMA model. The significance of this study was obtained by the MAPE value of 1.56 percent when compared to the actual data. |
---|---|
ISSN: | 2654-4644 2654-4644 |
DOI: | 10.31258/ijeepse.5.1.6-11 |