Loading…

Tuning the Linear and Nonlinear Optical Properties of Pyrene-Pyridine Chromophores by Protonation and Complexation to d10 Metal Centers

The linear and second-order nonlinear optical (NLO) properties of two pyrene-pyridine chromophores, namely, 4-(pyren-1-yl)pyridine (L1) and 4-(2-(pyren-1-yl)ethyl)pyridine (L2), were investigated and modulated by performing protonation/deprotonation cycles or by complexation to d10 metal centers suc...

Full description

Saved in:
Bibliographic Details
Published in:Inorganics 2019-03, Vol.7 (3), p.38
Main Authors: Lucenti, Elena, Forni, Alessandra, Marinotto, Daniele, Previtali, Andrea, Righetto, Stefania, Cariati, Elena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The linear and second-order nonlinear optical (NLO) properties of two pyrene-pyridine chromophores, namely, 4-(pyren-1-yl)pyridine (L1) and 4-(2-(pyren-1-yl)ethyl)pyridine (L2), were investigated and modulated by performing protonation/deprotonation cycles or by complexation to d10 metal centers such as Zn(II) and Cu(I) to form the monomeric [Zn(CH3CO2)2(L1)2] complex and the [CuI(L2)]n coordination polymer, respectively. The structures of L1, L2, [Zn(CH3CO2)2(L1)2] and [CuI(L2)]n were determined by means of single-crystal X-ray diffraction studies. The NLO response, measured by the electric-field-induced second harmonic generation (EFISH) technique, was positive for both chromophores and showed an inversion of the sign after exposure to HCl vapors. This process was completely reversible and the original values were restored by simple exposure to NH3 vapors. Coordination of L1 to Zn(II) also resulted in a negative NLO response, although smaller in magnitude compared to the protonated form, due to the weak Lewis acidity of the “Zn(CH3CO2)2” fragment. The results were also interpreted on the basis of DFT/TDDFT calculations.
ISSN:2304-6740
2304-6740
DOI:10.3390/inorganics7030038