Loading…

Linear Version of Parseval's Theorem

Parseval's theorem states that the energy of a signal is preserved by the discrete Fourier transform (DFT). Parseval's formula shows that there is a nonlinear invariant function for the DFT, so the total energy of a signal can be computed from the signal or its DFT using the same nonlinear...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.27230-27241
Main Authors: Hassanzadeh, Mohammad, Shahrrava, Behnam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-e1bc3934211dc5935b77035e05e2e1bb2b756478e3cb48d1f3485bb0c6fb328c3
cites cdi_FETCH-LOGICAL-c338t-e1bc3934211dc5935b77035e05e2e1bb2b756478e3cb48d1f3485bb0c6fb328c3
container_end_page 27241
container_issue
container_start_page 27230
container_title IEEE access
container_volume 10
creator Hassanzadeh, Mohammad
Shahrrava, Behnam
description Parseval's theorem states that the energy of a signal is preserved by the discrete Fourier transform (DFT). Parseval's formula shows that there is a nonlinear invariant function for the DFT, so the total energy of a signal can be computed from the signal or its DFT using the same nonlinear function. In this paper, we try to answer the question of whether there are linear invariant functions for the DFT, and how they can be found, along with their potential applications in digital signal processing. In order to answer this question, we first prove that the only linear equations that are preserved by the DFT are its orthogonal projections. Then, using Hilbert spaces and adjoint operators, we propose an algorithm that computes all linear invariant functions for the DFT. These linear invariant functions are also shown to be useful and important in a variety of signal-processing applications, particularly for finding some boundaries for transformed signals without explicitly evaluating the DFT, and vice versa. Additionally, using the proposed identities, we demonstrate that the average of a circular auto-correlation function for a large class of signals is preserved by the DFT. Finally, the results reported in this paper are verified for several short-length and long-length DFTs, including a 256-point DFT.
doi_str_mv 10.1109/ACCESS.2022.3157736
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7c9981000a0a400886625e563b82ef1b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9729813</ieee_id><doaj_id>oai_doaj_org_article_7c9981000a0a400886625e563b82ef1b</doaj_id><sourcerecordid>2639936730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-e1bc3934211dc5935b77035e05e2e1bb2b756478e3cb48d1f3485bb0c6fb328c3</originalsourceid><addsrcrecordid>eNpNUF1LQkEQvURBYv4CX4SCnq7t7tz9ehSxEoQCrddld51bV9S1XQ36961dkeZlhjNzzsycouhTMqSU6IfReDyZz4eMMDYEyqUEcVF0GBW6BA7i8l99XfRSWpEcKkNcdoq7WbNFGwfvGFMTtoNQD15tTPht1_dpsPjEEHFzU1zVdp2wd8rd4u1xshg_l7OXp-l4NCs9gNqXSJ0HDRWjdOm5Bu6kJMCRcGS555iTXFRSIXhXqSWtoVLcOeJF7YApD91i2uoug12ZXWw2Nv6YYBvzB4T4YWzcN36NRnqtFc2PWGKr_I4SgnHkApxiWFOXtW5brV0MXwdMe7MKh7jN5xsmQGsQEkiegnbKx5BSxPq8lRJzdNe07pqju-bkbmb1W1aDiGeGliyfBPALz9NyHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639936730</pqid></control><display><type>article</type><title>Linear Version of Parseval's Theorem</title><source>IEEE Open Access Journals</source><creator>Hassanzadeh, Mohammad ; Shahrrava, Behnam</creator><creatorcontrib>Hassanzadeh, Mohammad ; Shahrrava, Behnam</creatorcontrib><description>Parseval's theorem states that the energy of a signal is preserved by the discrete Fourier transform (DFT). Parseval's formula shows that there is a nonlinear invariant function for the DFT, so the total energy of a signal can be computed from the signal or its DFT using the same nonlinear function. In this paper, we try to answer the question of whether there are linear invariant functions for the DFT, and how they can be found, along with their potential applications in digital signal processing. In order to answer this question, we first prove that the only linear equations that are preserved by the DFT are its orthogonal projections. Then, using Hilbert spaces and adjoint operators, we propose an algorithm that computes all linear invariant functions for the DFT. These linear invariant functions are also shown to be useful and important in a variety of signal-processing applications, particularly for finding some boundaries for transformed signals without explicitly evaluating the DFT, and vice versa. Additionally, using the proposed identities, we demonstrate that the average of a circular auto-correlation function for a large class of signals is preserved by the DFT. Finally, the results reported in this paper are verified for several short-length and long-length DFTs, including a 256-point DFT.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3157736</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adjoint operators ; Algorithms ; Autocorrelation functions ; Digital signal processing ; discrete Fourier transform (DFT) ; Discrete Fourier transforms ; Eigenvalues and eigenfunctions ; Fourier transforms ; Hilbert space ; Hilbert spaces ; Identities ; invariant functions ; Invariants ; Linear equations ; Operators (mathematics) ; Parseval’s theorem ; Questions ; Signal processing ; Signal processing algorithms ; Spectral analysis ; Symmetric matrices ; Theorems ; Time-frequency analysis</subject><ispartof>IEEE access, 2022, Vol.10, p.27230-27241</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-e1bc3934211dc5935b77035e05e2e1bb2b756478e3cb48d1f3485bb0c6fb328c3</citedby><cites>FETCH-LOGICAL-c338t-e1bc3934211dc5935b77035e05e2e1bb2b756478e3cb48d1f3485bb0c6fb328c3</cites><orcidid>0000-0001-6457-4167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9729813$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Hassanzadeh, Mohammad</creatorcontrib><creatorcontrib>Shahrrava, Behnam</creatorcontrib><title>Linear Version of Parseval's Theorem</title><title>IEEE access</title><addtitle>Access</addtitle><description>Parseval's theorem states that the energy of a signal is preserved by the discrete Fourier transform (DFT). Parseval's formula shows that there is a nonlinear invariant function for the DFT, so the total energy of a signal can be computed from the signal or its DFT using the same nonlinear function. In this paper, we try to answer the question of whether there are linear invariant functions for the DFT, and how they can be found, along with their potential applications in digital signal processing. In order to answer this question, we first prove that the only linear equations that are preserved by the DFT are its orthogonal projections. Then, using Hilbert spaces and adjoint operators, we propose an algorithm that computes all linear invariant functions for the DFT. These linear invariant functions are also shown to be useful and important in a variety of signal-processing applications, particularly for finding some boundaries for transformed signals without explicitly evaluating the DFT, and vice versa. Additionally, using the proposed identities, we demonstrate that the average of a circular auto-correlation function for a large class of signals is preserved by the DFT. Finally, the results reported in this paper are verified for several short-length and long-length DFTs, including a 256-point DFT.</description><subject>Adjoint operators</subject><subject>Algorithms</subject><subject>Autocorrelation functions</subject><subject>Digital signal processing</subject><subject>discrete Fourier transform (DFT)</subject><subject>Discrete Fourier transforms</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Fourier transforms</subject><subject>Hilbert space</subject><subject>Hilbert spaces</subject><subject>Identities</subject><subject>invariant functions</subject><subject>Invariants</subject><subject>Linear equations</subject><subject>Operators (mathematics)</subject><subject>Parseval’s theorem</subject><subject>Questions</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Spectral analysis</subject><subject>Symmetric matrices</subject><subject>Theorems</subject><subject>Time-frequency analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUF1LQkEQvURBYv4CX4SCnq7t7tz9ehSxEoQCrddld51bV9S1XQ36961dkeZlhjNzzsycouhTMqSU6IfReDyZz4eMMDYEyqUEcVF0GBW6BA7i8l99XfRSWpEcKkNcdoq7WbNFGwfvGFMTtoNQD15tTPht1_dpsPjEEHFzU1zVdp2wd8rd4u1xshg_l7OXp-l4NCs9gNqXSJ0HDRWjdOm5Bu6kJMCRcGS555iTXFRSIXhXqSWtoVLcOeJF7YApD91i2uoug12ZXWw2Nv6YYBvzB4T4YWzcN36NRnqtFc2PWGKr_I4SgnHkApxiWFOXtW5brV0MXwdMe7MKh7jN5xsmQGsQEkiegnbKx5BSxPq8lRJzdNe07pqju-bkbmb1W1aDiGeGliyfBPALz9NyHw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hassanzadeh, Mohammad</creator><creator>Shahrrava, Behnam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6457-4167</orcidid></search><sort><creationdate>2022</creationdate><title>Linear Version of Parseval's Theorem</title><author>Hassanzadeh, Mohammad ; Shahrrava, Behnam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-e1bc3934211dc5935b77035e05e2e1bb2b756478e3cb48d1f3485bb0c6fb328c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adjoint operators</topic><topic>Algorithms</topic><topic>Autocorrelation functions</topic><topic>Digital signal processing</topic><topic>discrete Fourier transform (DFT)</topic><topic>Discrete Fourier transforms</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Fourier transforms</topic><topic>Hilbert space</topic><topic>Hilbert spaces</topic><topic>Identities</topic><topic>invariant functions</topic><topic>Invariants</topic><topic>Linear equations</topic><topic>Operators (mathematics)</topic><topic>Parseval’s theorem</topic><topic>Questions</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Spectral analysis</topic><topic>Symmetric matrices</topic><topic>Theorems</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassanzadeh, Mohammad</creatorcontrib><creatorcontrib>Shahrrava, Behnam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassanzadeh, Mohammad</au><au>Shahrrava, Behnam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Version of Parseval's Theorem</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>27230</spage><epage>27241</epage><pages>27230-27241</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Parseval's theorem states that the energy of a signal is preserved by the discrete Fourier transform (DFT). Parseval's formula shows that there is a nonlinear invariant function for the DFT, so the total energy of a signal can be computed from the signal or its DFT using the same nonlinear function. In this paper, we try to answer the question of whether there are linear invariant functions for the DFT, and how they can be found, along with their potential applications in digital signal processing. In order to answer this question, we first prove that the only linear equations that are preserved by the DFT are its orthogonal projections. Then, using Hilbert spaces and adjoint operators, we propose an algorithm that computes all linear invariant functions for the DFT. These linear invariant functions are also shown to be useful and important in a variety of signal-processing applications, particularly for finding some boundaries for transformed signals without explicitly evaluating the DFT, and vice versa. Additionally, using the proposed identities, we demonstrate that the average of a circular auto-correlation function for a large class of signals is preserved by the DFT. Finally, the results reported in this paper are verified for several short-length and long-length DFTs, including a 256-point DFT.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3157736</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6457-4167</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.27230-27241
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7c9981000a0a400886625e563b82ef1b
source IEEE Open Access Journals
subjects Adjoint operators
Algorithms
Autocorrelation functions
Digital signal processing
discrete Fourier transform (DFT)
Discrete Fourier transforms
Eigenvalues and eigenfunctions
Fourier transforms
Hilbert space
Hilbert spaces
Identities
invariant functions
Invariants
Linear equations
Operators (mathematics)
Parseval’s theorem
Questions
Signal processing
Signal processing algorithms
Spectral analysis
Symmetric matrices
Theorems
Time-frequency analysis
title Linear Version of Parseval's Theorem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Version%20of%20Parseval's%20Theorem&rft.jtitle=IEEE%20access&rft.au=Hassanzadeh,%20Mohammad&rft.date=2022&rft.volume=10&rft.spage=27230&rft.epage=27241&rft.pages=27230-27241&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3157736&rft_dat=%3Cproquest_doaj_%3E2639936730%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-e1bc3934211dc5935b77035e05e2e1bb2b756478e3cb48d1f3485bb0c6fb328c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2639936730&rft_id=info:pmid/&rft_ieee_id=9729813&rfr_iscdi=true