Loading…
Vancomycin tolerance of adherent Staphylococcus aureus is impeded by nanospike-induced physiological changes
Bacterial colonization of implantable biomaterials is an ever-pervasive threat that causes devastating infections, yet continues to elude resolution. In the present study, we report how a rationally designed antibacterial surface containing sharp nanospikes can enhance the susceptibility of pathogen...
Saved in:
Published in: | NPJ biofilms and microbiomes 2023-11, Vol.9 (1), p.90-90, Article 90 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bacterial colonization of implantable biomaterials is an ever-pervasive threat that causes devastating infections, yet continues to elude resolution. In the present study, we report how a rationally designed antibacterial surface containing sharp nanospikes can enhance the susceptibility of pathogenic bacteria to antibiotics used in prophylactic procedures. We show that
Staphylococcus aureus
, once adhered to a titanium surface, changes its cell-surface charge to increase its tolerance to vancomycin. However, if the Ti surface is modified to bear sharp nanospikes, the activity of vancomycin is rejuvenated, leading to increased bacterial cell death through synergistic activity. Analysis of differential gene expression provided evidence of a set of genes involved with the modification of cell surface charge. Synchrotron-sourced attenuated Fourier-transform infrared microspectroscopy (ATR-FTIR), together with multivariate analysis, was utilized to further elucidate the biochemical changes of
S. aureus
adhered to nanospikes. By inhibiting the ability of the pathogen to reduce its net negative charge, the nanoengineered surface renders
S. aureus
more susceptible to positively charged antimicrobials such as vancomycin. This finding highlights the opportunity to enhance the potency of prophylactic antibiotic treatments during implant placement surgery by employing devices having surfaces modified with spike-like nanostructures. |
---|---|
ISSN: | 2055-5008 2055-5008 |
DOI: | 10.1038/s41522-023-00458-5 |