Loading…
Recovering of the Membrane Profile of an Electrostatic Circular MEMS by a Three-Stage Lobatto Procedure: A Convergence Analysis in the Absence of Ghost Solutions
In this paper, a stable numerical approach for recovering the membrane profile of a 2D Micro-Electric-Mechanical-Systems (MEMS) is presented. Starting from a well-known 2D nonlinear second-order differential model for electrostatic circular membrane MEMS, where the amplitude of the electrostatic fie...
Saved in:
Published in: | Mathematics (Basel) 2020-04, Vol.8 (4), p.487 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a stable numerical approach for recovering the membrane profile of a 2D Micro-Electric-Mechanical-Systems (MEMS) is presented. Starting from a well-known 2D nonlinear second-order differential model for electrostatic circular membrane MEMS, where the amplitude of the electrostatic field is considered proportional to the mean curvature of the membrane, a collocation procedure, based on the three-stage Lobatto formula, is derived. The convergence is studied, thus obtaining the parameters operative ranges determining the areas of applicability of the device under analysis. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math8040487 |