Loading…

Rapid diagnosis of celiac disease based on plasma Raman spectroscopy combined with deep learning

Celiac Disease (CD) is a primary malabsorption syndrome resulting from the interplay of genetic, immune, and dietary factors. CD negatively impacts daily activities and may lead to conditions such as osteoporosis, malignancies in the small intestine, ulcerative jejunitis, and enteritis, ultimately c...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-07, Vol.14 (1), p.15056-13, Article 15056
Main Authors: Shi, Tian, Li, Jiahe, Li, Na, Chen, Cheng, Chen, Chen, Chang, Chenjie, Xue, Shenglong, Liu, Weidong, Reyim, Ainur Maimaiti, Gao, Feng, Lv, Xiaoyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Celiac Disease (CD) is a primary malabsorption syndrome resulting from the interplay of genetic, immune, and dietary factors. CD negatively impacts daily activities and may lead to conditions such as osteoporosis, malignancies in the small intestine, ulcerative jejunitis, and enteritis, ultimately causing severe malnutrition. Therefore, an effective and rapid differentiation between healthy individuals and those with celiac disease is crucial for early diagnosis and treatment. This study utilizes Raman spectroscopy combined with deep learning models to achieve a non-invasive, rapid, and accurate diagnostic method for celiac disease and healthy controls. A total of 59 plasma samples, comprising 29 celiac disease cases and 30 healthy controls, were collected for experimental purposes. Convolutional Neural Network (CNN), Multi-Scale Convolutional Neural Network (MCNN), Residual Network (ResNet), and Deep Residual Shrinkage Network (DRSN) classification models were employed. The accuracy rates for these models were found to be 86.67%, 90.76%, 86.67% and 95.00%, respectively. Comparative validation results revealed that the DRSN model exhibited the best performance, with an AUC value and accuracy of 97.60% and 95%, respectively. This confirms the superiority of Raman spectroscopy combined with deep learning in the diagnosis of celiac disease.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-64621-4