Loading…
Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor
The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransis...
Saved in:
Published in: | Nature communications 2016-06, Vol.7 (1), p.11954-11954, Article 11954 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c512t-b998e9c0b04847d276f8dbddcd40a23d9e9546f08a31b06d945e49f863e5d71e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c512t-b998e9c0b04847d276f8dbddcd40a23d9e9546f08a31b06d945e49f863e5d71e3 |
container_end_page | 11954 |
container_issue | 1 |
container_start_page | 11954 |
container_title | Nature communications |
container_volume | 7 |
creator | Nikitskiy, Ivan Goossens, Stijn Kufer, Dominik Lasanta, Tania Navickaite, Gabriele Koppens, Frank H. L. Konstantatos, Gerasimos |
description | The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector device by integrating a colloidal quantum dot photodiode atop a graphene phototransistor. Our hybrid detector overcomes the limitations of a phototransistor in terms of speed, quantum efficiency and linear dynamic range. We report quantum efficiencies in excess of 70%, gain of 10
5
and linear dynamic range of 110 dB and 3 dB bandwidth of 1.5 kHz. This constitutes a demonstration of an optoelectronically active device integrated directly atop graphene and paves the way towards a generation of flexible highly performing hybrid two-dimensional (2D)/0D optoelectronics.
The combination of fast photo-response and high gain plays a pivotal role in photodetector devices. Here the authors combine a colloidal quantum dot photodiode with a graphene phototransistor to overcome the speed, quantum efficiency and linear dynamic range limitations of available phototransistors. |
doi_str_mv | 10.1038/ncomms11954 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7d2ffdca1bf14cccbfe875a59f86bc37</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7d2ffdca1bf14cccbfe875a59f86bc37</doaj_id><sourcerecordid>4092021021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-b998e9c0b04847d276f8dbddcd40a23d9e9546f08a31b06d945e49f863e5d71e3</originalsourceid><addsrcrecordid>eNptks9rHCEUgIfS0oQ0p96L0Euh3VZHXfVSKKE_FgK9tGdx9M2ui6MbdRLy39dk0rAp9aL4Pr73nr6ue03wR4Kp_BRtmqZCiOLsWXfaY0ZWRPT0-dH5pDsvZY_boopIxl52J72ghAiCTzu7iRW22VQft8hEBAFszd6aEG6RsdVfA7IphOSdCehqNrHOE3KposMu1eR8coBufN0hg5rmsIMIS6hmE4svNeVX3YvRhALnD_tZ9_vb118XP1aXP79vLr5criwnfV0NSklQFg-YSSZcL9ajdINz1jFseuoUtCbXI5aGkgGvnWIcmBrlmgJ3ggA96zaL1yWz14fsJ5NvdTJe31-kvNUmV28D6KYfR2cNGUbCrLXDCFJww-90g6WiuT4vrsM8TOAsxNZPeCJ9Gol-p7fpWjNFOKa4Cd49CHK6mqFUPfliIQQTIc1FE6GEFELQvqFv_0H3ac6xPdU9xTmRXDXq_ULZnErJMD4WQ7C-mwV9NAuNfnNc_yP79-cb8GEBSgvFLeSjpP_x_QEHNMKF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797551859</pqid></control><display><type>article</type><title>Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor</title><source>Nature</source><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Nikitskiy, Ivan ; Goossens, Stijn ; Kufer, Dominik ; Lasanta, Tania ; Navickaite, Gabriele ; Koppens, Frank H. L. ; Konstantatos, Gerasimos</creator><creatorcontrib>Nikitskiy, Ivan ; Goossens, Stijn ; Kufer, Dominik ; Lasanta, Tania ; Navickaite, Gabriele ; Koppens, Frank H. L. ; Konstantatos, Gerasimos</creatorcontrib><description>The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector device by integrating a colloidal quantum dot photodiode atop a graphene phototransistor. Our hybrid detector overcomes the limitations of a phototransistor in terms of speed, quantum efficiency and linear dynamic range. We report quantum efficiencies in excess of 70%, gain of 10
5
and linear dynamic range of 110 dB and 3 dB bandwidth of 1.5 kHz. This constitutes a demonstration of an optoelectronically active device integrated directly atop graphene and paves the way towards a generation of flexible highly performing hybrid two-dimensional (2D)/0D optoelectronics.
The combination of fast photo-response and high gain plays a pivotal role in photodetector devices. Here the authors combine a colloidal quantum dot photodiode with a graphene phototransistor to overcome the speed, quantum efficiency and linear dynamic range limitations of available phototransistors.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms11954</identifier><identifier>PMID: 27311710</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/766/25 ; 639/925 ; Bandwidths ; Electrodes ; Electrons ; Graphene ; Humanities and Social Sciences ; multidisciplinary ; Quantum dots ; Science ; Science (multidisciplinary) ; Sensors</subject><ispartof>Nature communications, 2016-06, Vol.7 (1), p.11954-11954, Article 11954</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-b998e9c0b04847d276f8dbddcd40a23d9e9546f08a31b06d945e49f863e5d71e3</citedby><cites>FETCH-LOGICAL-c512t-b998e9c0b04847d276f8dbddcd40a23d9e9546f08a31b06d945e49f863e5d71e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1797551859/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1797551859?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27311710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikitskiy, Ivan</creatorcontrib><creatorcontrib>Goossens, Stijn</creatorcontrib><creatorcontrib>Kufer, Dominik</creatorcontrib><creatorcontrib>Lasanta, Tania</creatorcontrib><creatorcontrib>Navickaite, Gabriele</creatorcontrib><creatorcontrib>Koppens, Frank H. L.</creatorcontrib><creatorcontrib>Konstantatos, Gerasimos</creatorcontrib><title>Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector device by integrating a colloidal quantum dot photodiode atop a graphene phototransistor. Our hybrid detector overcomes the limitations of a phototransistor in terms of speed, quantum efficiency and linear dynamic range. We report quantum efficiencies in excess of 70%, gain of 10
5
and linear dynamic range of 110 dB and 3 dB bandwidth of 1.5 kHz. This constitutes a demonstration of an optoelectronically active device integrated directly atop graphene and paves the way towards a generation of flexible highly performing hybrid two-dimensional (2D)/0D optoelectronics.
The combination of fast photo-response and high gain plays a pivotal role in photodetector devices. Here the authors combine a colloidal quantum dot photodiode with a graphene phototransistor to overcome the speed, quantum efficiency and linear dynamic range limitations of available phototransistors.</description><subject>639/301/1005/1007</subject><subject>639/766/25</subject><subject>639/925</subject><subject>Bandwidths</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Quantum dots</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9rHCEUgIfS0oQ0p96L0Euh3VZHXfVSKKE_FgK9tGdx9M2ui6MbdRLy39dk0rAp9aL4Pr73nr6ue03wR4Kp_BRtmqZCiOLsWXfaY0ZWRPT0-dH5pDsvZY_boopIxl52J72ghAiCTzu7iRW22VQft8hEBAFszd6aEG6RsdVfA7IphOSdCehqNrHOE3KposMu1eR8coBufN0hg5rmsIMIS6hmE4svNeVX3YvRhALnD_tZ9_vb118XP1aXP79vLr5criwnfV0NSklQFg-YSSZcL9ajdINz1jFseuoUtCbXI5aGkgGvnWIcmBrlmgJ3ggA96zaL1yWz14fsJ5NvdTJe31-kvNUmV28D6KYfR2cNGUbCrLXDCFJww-90g6WiuT4vrsM8TOAsxNZPeCJ9Gol-p7fpWjNFOKa4Cd49CHK6mqFUPfliIQQTIc1FE6GEFELQvqFv_0H3ac6xPdU9xTmRXDXq_ULZnErJMD4WQ7C-mwV9NAuNfnNc_yP79-cb8GEBSgvFLeSjpP_x_QEHNMKF</recordid><startdate>20160617</startdate><enddate>20160617</enddate><creator>Nikitskiy, Ivan</creator><creator>Goossens, Stijn</creator><creator>Kufer, Dominik</creator><creator>Lasanta, Tania</creator><creator>Navickaite, Gabriele</creator><creator>Koppens, Frank H. L.</creator><creator>Konstantatos, Gerasimos</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160617</creationdate><title>Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor</title><author>Nikitskiy, Ivan ; Goossens, Stijn ; Kufer, Dominik ; Lasanta, Tania ; Navickaite, Gabriele ; Koppens, Frank H. L. ; Konstantatos, Gerasimos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-b998e9c0b04847d276f8dbddcd40a23d9e9546f08a31b06d945e49f863e5d71e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/1005/1007</topic><topic>639/766/25</topic><topic>639/925</topic><topic>Bandwidths</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Quantum dots</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikitskiy, Ivan</creatorcontrib><creatorcontrib>Goossens, Stijn</creatorcontrib><creatorcontrib>Kufer, Dominik</creatorcontrib><creatorcontrib>Lasanta, Tania</creatorcontrib><creatorcontrib>Navickaite, Gabriele</creatorcontrib><creatorcontrib>Koppens, Frank H. L.</creatorcontrib><creatorcontrib>Konstantatos, Gerasimos</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikitskiy, Ivan</au><au>Goossens, Stijn</au><au>Kufer, Dominik</au><au>Lasanta, Tania</au><au>Navickaite, Gabriele</au><au>Koppens, Frank H. L.</au><au>Konstantatos, Gerasimos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-06-17</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>11954</spage><epage>11954</epage><pages>11954-11954</pages><artnum>11954</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector device by integrating a colloidal quantum dot photodiode atop a graphene phototransistor. Our hybrid detector overcomes the limitations of a phototransistor in terms of speed, quantum efficiency and linear dynamic range. We report quantum efficiencies in excess of 70%, gain of 10
5
and linear dynamic range of 110 dB and 3 dB bandwidth of 1.5 kHz. This constitutes a demonstration of an optoelectronically active device integrated directly atop graphene and paves the way towards a generation of flexible highly performing hybrid two-dimensional (2D)/0D optoelectronics.
The combination of fast photo-response and high gain plays a pivotal role in photodetector devices. Here the authors combine a colloidal quantum dot photodiode with a graphene phototransistor to overcome the speed, quantum efficiency and linear dynamic range limitations of available phototransistors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27311710</pmid><doi>10.1038/ncomms11954</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-06, Vol.7 (1), p.11954-11954, Article 11954 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7d2ffdca1bf14cccbfe875a59f86bc37 |
source | Nature; ProQuest - Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/1005/1007 639/766/25 639/925 Bandwidths Electrodes Electrons Graphene Humanities and Social Sciences multidisciplinary Quantum dots Science Science (multidisciplinary) Sensors |
title | Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20an%20electrically%20active%20colloidal%20quantum%20dot%20photodiode%20with%20a%20graphene%20phototransistor&rft.jtitle=Nature%20communications&rft.au=Nikitskiy,%20Ivan&rft.date=2016-06-17&rft.volume=7&rft.issue=1&rft.spage=11954&rft.epage=11954&rft.pages=11954-11954&rft.artnum=11954&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms11954&rft_dat=%3Cproquest_doaj_%3E4092021021%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-b998e9c0b04847d276f8dbddcd40a23d9e9546f08a31b06d945e49f863e5d71e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1797551859&rft_id=info:pmid/27311710&rfr_iscdi=true |