Loading…

Ocular and visual perceptive factors associated with treatment outcomes in patients with anisometropic amblyopia

The aim of this observational study was to identify ocular and visual perceptive risk factors related to treatment results following refractive correction and patching in children with anisometropic amblyopia, who were between the ages of 4 to 14 years old. One-hundred and two children with newly di...

Full description

Saved in:
Bibliographic Details
Published in:BMC ophthalmology 2023-01, Vol.23 (1), p.21-21, Article 21
Main Authors: Hong, Jie, Kuo, Debbie, Su, Han, Li, Lei, Guo, Yanan, Chu, Hang, Fu, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this observational study was to identify ocular and visual perceptive risk factors related to treatment results following refractive correction and patching in children with anisometropic amblyopia, who were between the ages of 4 to 14 years old. One-hundred and two children with newly diagnosed anisometropic amblyopia were recruited. Successful treatment of amblyopia was defined as the final best corrected visual acuity (BCVA) better than or equal to 0.1 logMAR and amblyopic eye BCVA within 1 line of the sound eye BCVA by the end of the treatment period. BCVA, cycloplegic refraction, stereoacuity, perceptual eye position (PEP) and interocular suppression were measured. Of these patients, 45.10% achieved successful treatment of amblyopia after refractive correction and patching for 10.5 months. The mean age was not significantly different between patients who were successfully and unsuccessfully treated (5.50 ± 1.59 years vs 6.14 ± 2.19 years, respectively). Patients who failed treatment had significantly larger interocular difference of BCVA at the time of initial treatment (successful group: 0.33 ± 0.29 logMAR, unsuccessful group: 0.65 ± 0.35 logMAR) and after refractive adaptation (successful group: 0.15 ± 0.13 logMAR, unsuccessful group: 0.42 ± 0.35 logMAR). They also had higher spherical equivalent (SE) of amblyopic eyes (successful group: 3.08 ± 3.61 D, unsuccessful group: 5.27 ± 3.38 D), bigger interocular difference of SE (successful group: 0.94 ± 2.71 D, unsuccessful group: 3.09 ± 3.05 D), worse stereoacuity (successful group: 2.32 ± 0.37 log seconds of arc, unsuccessful group: 2.75 ± 0.32 log seconds of arc), larger vertical PEP deviation (successful group: 6.41 ± 6.08 pixel, unsuccessful group: 19.07 ± 24.96 pixel) and deeper interocular suppression (successful group: 21.7 ± 19.7%, unsuccessful group: 37.8 ± 27.1%) than those of successfully treated patients. The most influential treatment failure risk factors were larger vertical PEP deviation [adjusted odds ratio (OR) (95% confidence interval) 1.12 (1.02-1.22)] and worse stereoacuity [adjusted odds ratio (OR) (95% confidence interval) 7.72 (1.50-39.85)] in multiple logistic regression analysis. Larger vertical PEP deviation and worse stereoacuity were the most influential treatment failure risk factors in children with anisometropic amblyopia. The vertical PEP deviation and stereoacuity, which can reflect interocular interaction, may be useful in predicting the response to therapy.
ISSN:1471-2415
1471-2415
DOI:10.1186/s12886-023-02770-2