Loading…

Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress

Aims Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms. Methods...

Full description

Saved in:
Bibliographic Details
Published in:ESC Heart Failure 2024-06, Vol.11 (3), p.1580-1593
Main Authors: Ping, Ping, Yang, Ting, Ning, Chaoxue, Zhao, Qingkai, Zhao, Yali, Yang, Tao, Gao, Zhitao, Fu, Shihui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c5417-3938d50f206522933f850ad760a004970c4e594768ae1ca66e9e918c1f16a9a63
container_end_page 1593
container_issue 3
container_start_page 1580
container_title ESC Heart Failure
container_volume 11
creator Ping, Ping
Yang, Ting
Ning, Chaoxue
Zhao, Qingkai
Zhao, Yali
Yang, Tao
Gao, Zhitao
Fu, Shihui
description Aims Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms. Methods and results To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO‐induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick‐end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO‐treated H9c2 cells. Moreover, CGA inhibited ISO‐induced up‐regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β‐myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R‐like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase‐12/9/3) but increased the expression of anti‐apoptosis marker bcl‐2 in a dose‐dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine‐1‐phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P 
doi_str_mv 10.1002/ehf2.14707
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7d56d54d4cfe42eea33bf8d6a16b996b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7d56d54d4cfe42eea33bf8d6a16b996b</doaj_id><sourcerecordid>2928584380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5417-3938d50f206522933f850ad760a004970c4e594768ae1ca66e9e918c1f16a9a63</originalsourceid><addsrcrecordid>eNp9ks9qFTEUhwdRbKnd-AAScCPCrfkzySQrkUtrCwUX6jqcmzlzJ5e5kzHJVO7OR7Cv2Ccx7a2ldeEinJDz8eWQ_KrqNaMnjFL-AfuOn7C6oc2z6pBTKRdSc_780f6gOk5pQyllUjHJ65fVgdBCGSPpYXW97IcQwxpH7wg43xLIGccZMibiILYeHOl3E8Ycw9TvyJUHMk83v35HXM8DZD-uydepLyUkP2JpsLKmPqSpLxIS0eGUQ2QkB-LH3q98Jji2YRogbculEbN38zBvScoRU3pVvehgSHh8X4-q72en35bni8svny-Wny4XTtasWQgjdCtpx6mSnBshOi0ptI2iQGltGupqlKZulAZkDpRCg4ZpxzqmwIASR9XF3tsG2Ngp-i3EnQ3g7d1BiGsLsYw2oG1aqVpZt7XrsOaIIMSq060CplbGqFVxfdy7pnm1xdbhmCMMT6RPO6Pv7TpcWcao0UrKYnh3b4jhx4wp261PDocBRgxzstxwLXUtNC3o23_QTZjjWN7KivLnUjMtTaHe7ykXQ0oRu4dpGLW3ybG3ybF3ySnwm8fzP6B_c1IAtgd--gF3_1HZ0_Mzvpf-AaWr030</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055581859</pqid></control><display><type>article</type><title>Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress</title><source>Wiley Online Library</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ping, Ping ; Yang, Ting ; Ning, Chaoxue ; Zhao, Qingkai ; Zhao, Yali ; Yang, Tao ; Gao, Zhitao ; Fu, Shihui</creator><creatorcontrib>Ping, Ping ; Yang, Ting ; Ning, Chaoxue ; Zhao, Qingkai ; Zhao, Yali ; Yang, Tao ; Gao, Zhitao ; Fu, Shihui</creatorcontrib><description>Aims Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms. Methods and results To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO‐induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick‐end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO‐treated H9c2 cells. Moreover, CGA inhibited ISO‐induced up‐regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β‐myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R‐like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase‐12/9/3) but increased the expression of anti‐apoptosis marker bcl‐2 in a dose‐dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine‐1‐phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P &lt; 0.05). CGA also restored ISO‐induced inhibition on the AMP‐activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling in H9c2 cells, while S1pr1 knockdown abolished these CGA‐induced effects (P &lt; 0.05). CGA (90 mg/kg/day, for six consecutive days) protected rats against cardiac hypertrophy in vivo (P &lt; 0.05). Conclusions CGA treatment attenuated ISO‐induced ERS and cardiac hypertrophy by activating the AMPK/SIRT1 pathway via modulation of S1pr1.</description><identifier>ISSN: 2055-5822</identifier><identifier>EISSN: 2055-5822</identifier><identifier>DOI: 10.1002/ehf2.14707</identifier><identifier>PMID: 38369950</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Apoptosis ; Apoptosis - drug effects ; Autophagy ; Blotting, Western ; Cardiac hypertrophy ; Cardiomegaly - metabolism ; Cardiomegaly - prevention &amp; control ; Cardiomyocytes ; Cells ; Cells, Cultured ; Chlorogenic acid (CGA) ; Chlorogenic Acid - pharmacology ; Disease Models, Animal ; Endoplasmic reticulum ; Endoplasmic reticulum stress ; Endoplasmic Reticulum Stress - drug effects ; Heart ; Kinases ; Male ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - pathology ; Original ; Pathogenesis ; Peptides ; Physiology ; Plasmids ; Protein synthesis ; Proteins ; Rats ; Rats, Sprague-Dawley ; Signal Transduction - drug effects ; Sphingosine-1-Phosphate Receptors - metabolism ; Sphingosine‐1‐phosphate receptor 1 (S1pr1) ; Up-Regulation</subject><ispartof>ESC Heart Failure, 2024-06, Vol.11 (3), p.1580-1593</ispartof><rights>2024 The Authors. ESC Heart Failure published by John Wiley &amp; Sons Ltd on behalf of European Society of Cardiology.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5417-3938d50f206522933f850ad760a004970c4e594768ae1ca66e9e918c1f16a9a63</cites><orcidid>0000-0001-6707-9049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3055581859/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3055581859?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38369950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ping, Ping</creatorcontrib><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Ning, Chaoxue</creatorcontrib><creatorcontrib>Zhao, Qingkai</creatorcontrib><creatorcontrib>Zhao, Yali</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Gao, Zhitao</creatorcontrib><creatorcontrib>Fu, Shihui</creatorcontrib><title>Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress</title><title>ESC Heart Failure</title><addtitle>ESC Heart Fail</addtitle><description>Aims Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms. Methods and results To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO‐induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick‐end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO‐treated H9c2 cells. Moreover, CGA inhibited ISO‐induced up‐regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β‐myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R‐like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase‐12/9/3) but increased the expression of anti‐apoptosis marker bcl‐2 in a dose‐dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine‐1‐phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P &lt; 0.05). CGA also restored ISO‐induced inhibition on the AMP‐activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling in H9c2 cells, while S1pr1 knockdown abolished these CGA‐induced effects (P &lt; 0.05). CGA (90 mg/kg/day, for six consecutive days) protected rats against cardiac hypertrophy in vivo (P &lt; 0.05). Conclusions CGA treatment attenuated ISO‐induced ERS and cardiac hypertrophy by activating the AMPK/SIRT1 pathway via modulation of S1pr1.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Autophagy</subject><subject>Blotting, Western</subject><subject>Cardiac hypertrophy</subject><subject>Cardiomegaly - metabolism</subject><subject>Cardiomegaly - prevention &amp; control</subject><subject>Cardiomyocytes</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Chlorogenic acid (CGA)</subject><subject>Chlorogenic Acid - pharmacology</subject><subject>Disease Models, Animal</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic reticulum stress</subject><subject>Endoplasmic Reticulum Stress - drug effects</subject><subject>Heart</subject><subject>Kinases</subject><subject>Male</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Original</subject><subject>Pathogenesis</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Plasmids</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Transduction - drug effects</subject><subject>Sphingosine-1-Phosphate Receptors - metabolism</subject><subject>Sphingosine‐1‐phosphate receptor 1 (S1pr1)</subject><subject>Up-Regulation</subject><issn>2055-5822</issn><issn>2055-5822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9qFTEUhwdRbKnd-AAScCPCrfkzySQrkUtrCwUX6jqcmzlzJ5e5kzHJVO7OR7Cv2Ccx7a2ldeEinJDz8eWQ_KrqNaMnjFL-AfuOn7C6oc2z6pBTKRdSc_780f6gOk5pQyllUjHJ65fVgdBCGSPpYXW97IcQwxpH7wg43xLIGccZMibiILYeHOl3E8Ycw9TvyJUHMk83v35HXM8DZD-uydepLyUkP2JpsLKmPqSpLxIS0eGUQ2QkB-LH3q98Jji2YRogbculEbN38zBvScoRU3pVvehgSHh8X4-q72en35bni8svny-Wny4XTtasWQgjdCtpx6mSnBshOi0ptI2iQGltGupqlKZulAZkDpRCg4ZpxzqmwIASR9XF3tsG2Ngp-i3EnQ3g7d1BiGsLsYw2oG1aqVpZt7XrsOaIIMSq060CplbGqFVxfdy7pnm1xdbhmCMMT6RPO6Pv7TpcWcao0UrKYnh3b4jhx4wp261PDocBRgxzstxwLXUtNC3o23_QTZjjWN7KivLnUjMtTaHe7ykXQ0oRu4dpGLW3ybG3ybF3ySnwm8fzP6B_c1IAtgd--gF3_1HZ0_Mzvpf-AaWr030</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Ping, Ping</creator><creator>Yang, Ting</creator><creator>Ning, Chaoxue</creator><creator>Zhao, Qingkai</creator><creator>Zhao, Yali</creator><creator>Yang, Tao</creator><creator>Gao, Zhitao</creator><creator>Fu, Shihui</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6707-9049</orcidid></search><sort><creationdate>202406</creationdate><title>Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress</title><author>Ping, Ping ; Yang, Ting ; Ning, Chaoxue ; Zhao, Qingkai ; Zhao, Yali ; Yang, Tao ; Gao, Zhitao ; Fu, Shihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5417-3938d50f206522933f850ad760a004970c4e594768ae1ca66e9e918c1f16a9a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Autophagy</topic><topic>Blotting, Western</topic><topic>Cardiac hypertrophy</topic><topic>Cardiomegaly - metabolism</topic><topic>Cardiomegaly - prevention &amp; control</topic><topic>Cardiomyocytes</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Chlorogenic acid (CGA)</topic><topic>Chlorogenic Acid - pharmacology</topic><topic>Disease Models, Animal</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic reticulum stress</topic><topic>Endoplasmic Reticulum Stress - drug effects</topic><topic>Heart</topic><topic>Kinases</topic><topic>Male</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Original</topic><topic>Pathogenesis</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Plasmids</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Transduction - drug effects</topic><topic>Sphingosine-1-Phosphate Receptors - metabolism</topic><topic>Sphingosine‐1‐phosphate receptor 1 (S1pr1)</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ping, Ping</creatorcontrib><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Ning, Chaoxue</creatorcontrib><creatorcontrib>Zhao, Qingkai</creatorcontrib><creatorcontrib>Zhao, Yali</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Gao, Zhitao</creatorcontrib><creatorcontrib>Fu, Shihui</creatorcontrib><collection>Wiley Online Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (ProQuest Medical &amp; Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ESC Heart Failure</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ping, Ping</au><au>Yang, Ting</au><au>Ning, Chaoxue</au><au>Zhao, Qingkai</au><au>Zhao, Yali</au><au>Yang, Tao</au><au>Gao, Zhitao</au><au>Fu, Shihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress</atitle><jtitle>ESC Heart Failure</jtitle><addtitle>ESC Heart Fail</addtitle><date>2024-06</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>1580</spage><epage>1593</epage><pages>1580-1593</pages><issn>2055-5822</issn><eissn>2055-5822</eissn><abstract>Aims Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms. Methods and results To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO‐induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick‐end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO‐treated H9c2 cells. Moreover, CGA inhibited ISO‐induced up‐regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β‐myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R‐like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase‐12/9/3) but increased the expression of anti‐apoptosis marker bcl‐2 in a dose‐dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine‐1‐phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P &lt; 0.05). CGA also restored ISO‐induced inhibition on the AMP‐activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling in H9c2 cells, while S1pr1 knockdown abolished these CGA‐induced effects (P &lt; 0.05). CGA (90 mg/kg/day, for six consecutive days) protected rats against cardiac hypertrophy in vivo (P &lt; 0.05). Conclusions CGA treatment attenuated ISO‐induced ERS and cardiac hypertrophy by activating the AMPK/SIRT1 pathway via modulation of S1pr1.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38369950</pmid><doi>10.1002/ehf2.14707</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6707-9049</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2055-5822
ispartof ESC Heart Failure, 2024-06, Vol.11 (3), p.1580-1593
issn 2055-5822
2055-5822
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7d56d54d4cfe42eea33bf8d6a16b996b
source Wiley Online Library; Publicly Available Content Database; PubMed Central
subjects Animals
Apoptosis
Apoptosis - drug effects
Autophagy
Blotting, Western
Cardiac hypertrophy
Cardiomegaly - metabolism
Cardiomegaly - prevention & control
Cardiomyocytes
Cells
Cells, Cultured
Chlorogenic acid (CGA)
Chlorogenic Acid - pharmacology
Disease Models, Animal
Endoplasmic reticulum
Endoplasmic reticulum stress
Endoplasmic Reticulum Stress - drug effects
Heart
Kinases
Male
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - pathology
Original
Pathogenesis
Peptides
Physiology
Plasmids
Protein synthesis
Proteins
Rats
Rats, Sprague-Dawley
Signal Transduction - drug effects
Sphingosine-1-Phosphate Receptors - metabolism
Sphingosine‐1‐phosphate receptor 1 (S1pr1)
Up-Regulation
title Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlorogenic%20acid%20attenuates%20cardiac%20hypertrophy%20via%20up%E2%80%90regulating%20Sphingosine%E2%80%901%E2%80%90phosphate%20receptor1%20to%20inhibit%20endoplasmic%20reticulum%20stress&rft.jtitle=ESC%20Heart%20Failure&rft.au=Ping,%20Ping&rft.date=2024-06&rft.volume=11&rft.issue=3&rft.spage=1580&rft.epage=1593&rft.pages=1580-1593&rft.issn=2055-5822&rft.eissn=2055-5822&rft_id=info:doi/10.1002/ehf2.14707&rft_dat=%3Cproquest_doaj_%3E2928584380%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5417-3938d50f206522933f850ad760a004970c4e594768ae1ca66e9e918c1f16a9a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055581859&rft_id=info:pmid/38369950&rfr_iscdi=true