Loading…
Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress
Aims Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms. Methods...
Saved in:
Published in: | ESC Heart Failure 2024-06, Vol.11 (3), p.1580-1593 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c5417-3938d50f206522933f850ad760a004970c4e594768ae1ca66e9e918c1f16a9a63 |
container_end_page | 1593 |
container_issue | 3 |
container_start_page | 1580 |
container_title | ESC Heart Failure |
container_volume | 11 |
creator | Ping, Ping Yang, Ting Ning, Chaoxue Zhao, Qingkai Zhao, Yali Yang, Tao Gao, Zhitao Fu, Shihui |
description | Aims
Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms.
Methods and results
To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO‐induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick‐end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO‐treated H9c2 cells. Moreover, CGA inhibited ISO‐induced up‐regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β‐myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R‐like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase‐12/9/3) but increased the expression of anti‐apoptosis marker bcl‐2 in a dose‐dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine‐1‐phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P |
doi_str_mv | 10.1002/ehf2.14707 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7d56d54d4cfe42eea33bf8d6a16b996b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7d56d54d4cfe42eea33bf8d6a16b996b</doaj_id><sourcerecordid>2928584380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5417-3938d50f206522933f850ad760a004970c4e594768ae1ca66e9e918c1f16a9a63</originalsourceid><addsrcrecordid>eNp9ks9qFTEUhwdRbKnd-AAScCPCrfkzySQrkUtrCwUX6jqcmzlzJ5e5kzHJVO7OR7Cv2Ccx7a2ldeEinJDz8eWQ_KrqNaMnjFL-AfuOn7C6oc2z6pBTKRdSc_780f6gOk5pQyllUjHJ65fVgdBCGSPpYXW97IcQwxpH7wg43xLIGccZMibiILYeHOl3E8Ycw9TvyJUHMk83v35HXM8DZD-uydepLyUkP2JpsLKmPqSpLxIS0eGUQ2QkB-LH3q98Jji2YRogbculEbN38zBvScoRU3pVvehgSHh8X4-q72en35bni8svny-Wny4XTtasWQgjdCtpx6mSnBshOi0ptI2iQGltGupqlKZulAZkDpRCg4ZpxzqmwIASR9XF3tsG2Ngp-i3EnQ3g7d1BiGsLsYw2oG1aqVpZt7XrsOaIIMSq060CplbGqFVxfdy7pnm1xdbhmCMMT6RPO6Pv7TpcWcao0UrKYnh3b4jhx4wp261PDocBRgxzstxwLXUtNC3o23_QTZjjWN7KivLnUjMtTaHe7ykXQ0oRu4dpGLW3ybG3ybF3ySnwm8fzP6B_c1IAtgd--gF3_1HZ0_Mzvpf-AaWr030</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055581859</pqid></control><display><type>article</type><title>Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress</title><source>Wiley Online Library</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ping, Ping ; Yang, Ting ; Ning, Chaoxue ; Zhao, Qingkai ; Zhao, Yali ; Yang, Tao ; Gao, Zhitao ; Fu, Shihui</creator><creatorcontrib>Ping, Ping ; Yang, Ting ; Ning, Chaoxue ; Zhao, Qingkai ; Zhao, Yali ; Yang, Tao ; Gao, Zhitao ; Fu, Shihui</creatorcontrib><description>Aims
Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms.
Methods and results
To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO‐induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick‐end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO‐treated H9c2 cells. Moreover, CGA inhibited ISO‐induced up‐regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β‐myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R‐like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase‐12/9/3) but increased the expression of anti‐apoptosis marker bcl‐2 in a dose‐dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine‐1‐phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P < 0.05). CGA also restored ISO‐induced inhibition on the AMP‐activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling in H9c2 cells, while S1pr1 knockdown abolished these CGA‐induced effects (P < 0.05). CGA (90 mg/kg/day, for six consecutive days) protected rats against cardiac hypertrophy in vivo (P < 0.05).
Conclusions
CGA treatment attenuated ISO‐induced ERS and cardiac hypertrophy by activating the AMPK/SIRT1 pathway via modulation of S1pr1.</description><identifier>ISSN: 2055-5822</identifier><identifier>EISSN: 2055-5822</identifier><identifier>DOI: 10.1002/ehf2.14707</identifier><identifier>PMID: 38369950</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Animals ; Apoptosis ; Apoptosis - drug effects ; Autophagy ; Blotting, Western ; Cardiac hypertrophy ; Cardiomegaly - metabolism ; Cardiomegaly - prevention & control ; Cardiomyocytes ; Cells ; Cells, Cultured ; Chlorogenic acid (CGA) ; Chlorogenic Acid - pharmacology ; Disease Models, Animal ; Endoplasmic reticulum ; Endoplasmic reticulum stress ; Endoplasmic Reticulum Stress - drug effects ; Heart ; Kinases ; Male ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - pathology ; Original ; Pathogenesis ; Peptides ; Physiology ; Plasmids ; Protein synthesis ; Proteins ; Rats ; Rats, Sprague-Dawley ; Signal Transduction - drug effects ; Sphingosine-1-Phosphate Receptors - metabolism ; Sphingosine‐1‐phosphate receptor 1 (S1pr1) ; Up-Regulation</subject><ispartof>ESC Heart Failure, 2024-06, Vol.11 (3), p.1580-1593</ispartof><rights>2024 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5417-3938d50f206522933f850ad760a004970c4e594768ae1ca66e9e918c1f16a9a63</cites><orcidid>0000-0001-6707-9049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3055581859/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3055581859?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38369950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ping, Ping</creatorcontrib><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Ning, Chaoxue</creatorcontrib><creatorcontrib>Zhao, Qingkai</creatorcontrib><creatorcontrib>Zhao, Yali</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Gao, Zhitao</creatorcontrib><creatorcontrib>Fu, Shihui</creatorcontrib><title>Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress</title><title>ESC Heart Failure</title><addtitle>ESC Heart Fail</addtitle><description>Aims
Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms.
Methods and results
To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO‐induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick‐end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO‐treated H9c2 cells. Moreover, CGA inhibited ISO‐induced up‐regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β‐myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R‐like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase‐12/9/3) but increased the expression of anti‐apoptosis marker bcl‐2 in a dose‐dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine‐1‐phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P < 0.05). CGA also restored ISO‐induced inhibition on the AMP‐activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling in H9c2 cells, while S1pr1 knockdown abolished these CGA‐induced effects (P < 0.05). CGA (90 mg/kg/day, for six consecutive days) protected rats against cardiac hypertrophy in vivo (P < 0.05).
Conclusions
CGA treatment attenuated ISO‐induced ERS and cardiac hypertrophy by activating the AMPK/SIRT1 pathway via modulation of S1pr1.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Autophagy</subject><subject>Blotting, Western</subject><subject>Cardiac hypertrophy</subject><subject>Cardiomegaly - metabolism</subject><subject>Cardiomegaly - prevention & control</subject><subject>Cardiomyocytes</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Chlorogenic acid (CGA)</subject><subject>Chlorogenic Acid - pharmacology</subject><subject>Disease Models, Animal</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic reticulum stress</subject><subject>Endoplasmic Reticulum Stress - drug effects</subject><subject>Heart</subject><subject>Kinases</subject><subject>Male</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Original</subject><subject>Pathogenesis</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Plasmids</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Transduction - drug effects</subject><subject>Sphingosine-1-Phosphate Receptors - metabolism</subject><subject>Sphingosine‐1‐phosphate receptor 1 (S1pr1)</subject><subject>Up-Regulation</subject><issn>2055-5822</issn><issn>2055-5822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9qFTEUhwdRbKnd-AAScCPCrfkzySQrkUtrCwUX6jqcmzlzJ5e5kzHJVO7OR7Cv2Ccx7a2ldeEinJDz8eWQ_KrqNaMnjFL-AfuOn7C6oc2z6pBTKRdSc_780f6gOk5pQyllUjHJ65fVgdBCGSPpYXW97IcQwxpH7wg43xLIGccZMibiILYeHOl3E8Ycw9TvyJUHMk83v35HXM8DZD-uydepLyUkP2JpsLKmPqSpLxIS0eGUQ2QkB-LH3q98Jji2YRogbculEbN38zBvScoRU3pVvehgSHh8X4-q72en35bni8svny-Wny4XTtasWQgjdCtpx6mSnBshOi0ptI2iQGltGupqlKZulAZkDpRCg4ZpxzqmwIASR9XF3tsG2Ngp-i3EnQ3g7d1BiGsLsYw2oG1aqVpZt7XrsOaIIMSq060CplbGqFVxfdy7pnm1xdbhmCMMT6RPO6Pv7TpcWcao0UrKYnh3b4jhx4wp261PDocBRgxzstxwLXUtNC3o23_QTZjjWN7KivLnUjMtTaHe7ykXQ0oRu4dpGLW3ybG3ybF3ySnwm8fzP6B_c1IAtgd--gF3_1HZ0_Mzvpf-AaWr030</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Ping, Ping</creator><creator>Yang, Ting</creator><creator>Ning, Chaoxue</creator><creator>Zhao, Qingkai</creator><creator>Zhao, Yali</creator><creator>Yang, Tao</creator><creator>Gao, Zhitao</creator><creator>Fu, Shihui</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6707-9049</orcidid></search><sort><creationdate>202406</creationdate><title>Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress</title><author>Ping, Ping ; Yang, Ting ; Ning, Chaoxue ; Zhao, Qingkai ; Zhao, Yali ; Yang, Tao ; Gao, Zhitao ; Fu, Shihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5417-3938d50f206522933f850ad760a004970c4e594768ae1ca66e9e918c1f16a9a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Autophagy</topic><topic>Blotting, Western</topic><topic>Cardiac hypertrophy</topic><topic>Cardiomegaly - metabolism</topic><topic>Cardiomegaly - prevention & control</topic><topic>Cardiomyocytes</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Chlorogenic acid (CGA)</topic><topic>Chlorogenic Acid - pharmacology</topic><topic>Disease Models, Animal</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic reticulum stress</topic><topic>Endoplasmic Reticulum Stress - drug effects</topic><topic>Heart</topic><topic>Kinases</topic><topic>Male</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Original</topic><topic>Pathogenesis</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Plasmids</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Transduction - drug effects</topic><topic>Sphingosine-1-Phosphate Receptors - metabolism</topic><topic>Sphingosine‐1‐phosphate receptor 1 (S1pr1)</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ping, Ping</creatorcontrib><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Ning, Chaoxue</creatorcontrib><creatorcontrib>Zhao, Qingkai</creatorcontrib><creatorcontrib>Zhao, Yali</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Gao, Zhitao</creatorcontrib><creatorcontrib>Fu, Shihui</creatorcontrib><collection>Wiley Online Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ESC Heart Failure</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ping, Ping</au><au>Yang, Ting</au><au>Ning, Chaoxue</au><au>Zhao, Qingkai</au><au>Zhao, Yali</au><au>Yang, Tao</au><au>Gao, Zhitao</au><au>Fu, Shihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress</atitle><jtitle>ESC Heart Failure</jtitle><addtitle>ESC Heart Fail</addtitle><date>2024-06</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>1580</spage><epage>1593</epage><pages>1580-1593</pages><issn>2055-5822</issn><eissn>2055-5822</eissn><abstract>Aims
Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms.
Methods and results
To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO‐induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick‐end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO‐treated H9c2 cells. Moreover, CGA inhibited ISO‐induced up‐regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β‐myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R‐like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase‐12/9/3) but increased the expression of anti‐apoptosis marker bcl‐2 in a dose‐dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine‐1‐phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P < 0.05). CGA also restored ISO‐induced inhibition on the AMP‐activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling in H9c2 cells, while S1pr1 knockdown abolished these CGA‐induced effects (P < 0.05). CGA (90 mg/kg/day, for six consecutive days) protected rats against cardiac hypertrophy in vivo (P < 0.05).
Conclusions
CGA treatment attenuated ISO‐induced ERS and cardiac hypertrophy by activating the AMPK/SIRT1 pathway via modulation of S1pr1.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>38369950</pmid><doi>10.1002/ehf2.14707</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6707-9049</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-5822 |
ispartof | ESC Heart Failure, 2024-06, Vol.11 (3), p.1580-1593 |
issn | 2055-5822 2055-5822 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7d56d54d4cfe42eea33bf8d6a16b996b |
source | Wiley Online Library; Publicly Available Content Database; PubMed Central |
subjects | Animals Apoptosis Apoptosis - drug effects Autophagy Blotting, Western Cardiac hypertrophy Cardiomegaly - metabolism Cardiomegaly - prevention & control Cardiomyocytes Cells Cells, Cultured Chlorogenic acid (CGA) Chlorogenic Acid - pharmacology Disease Models, Animal Endoplasmic reticulum Endoplasmic reticulum stress Endoplasmic Reticulum Stress - drug effects Heart Kinases Male Myocytes, Cardiac - drug effects Myocytes, Cardiac - metabolism Myocytes, Cardiac - pathology Original Pathogenesis Peptides Physiology Plasmids Protein synthesis Proteins Rats Rats, Sprague-Dawley Signal Transduction - drug effects Sphingosine-1-Phosphate Receptors - metabolism Sphingosine‐1‐phosphate receptor 1 (S1pr1) Up-Regulation |
title | Chlorogenic acid attenuates cardiac hypertrophy via up‐regulating Sphingosine‐1‐phosphate receptor1 to inhibit endoplasmic reticulum stress |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlorogenic%20acid%20attenuates%20cardiac%20hypertrophy%20via%20up%E2%80%90regulating%20Sphingosine%E2%80%901%E2%80%90phosphate%20receptor1%20to%20inhibit%20endoplasmic%20reticulum%20stress&rft.jtitle=ESC%20Heart%20Failure&rft.au=Ping,%20Ping&rft.date=2024-06&rft.volume=11&rft.issue=3&rft.spage=1580&rft.epage=1593&rft.pages=1580-1593&rft.issn=2055-5822&rft.eissn=2055-5822&rft_id=info:doi/10.1002/ehf2.14707&rft_dat=%3Cproquest_doaj_%3E2928584380%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5417-3938d50f206522933f850ad760a004970c4e594768ae1ca66e9e918c1f16a9a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055581859&rft_id=info:pmid/38369950&rfr_iscdi=true |