Loading…

The influence of water hardness perturbations on bubble departure dynamics

The influence of small changes to water hardness on the nonlinear behaviour of liquid penetration into a capillary and the resulting air pressure fluctuations during air bubble formation are examined in this paper. Experiments were undertaken in which bubbles were generated both in water having a su...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-10, Vol.11 (1), p.21010-21010, Article 21010
Main Authors: Dzienis, P., Mosdorf, R., Czarnecki, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of small changes to water hardness on the nonlinear behaviour of liquid penetration into a capillary and the resulting air pressure fluctuations during air bubble formation are examined in this paper. Experiments were undertaken in which bubbles were generated both in water having a surface tensile force of σ  = 72.2 mN/m and in an aqueous solution of calcium carbonate having a surface tensile force of σ  = 75.4 mN/m, each contained in a glass capillary with an internal diameter of 1 mm. It is shown that both the maximum value of liquid penetration into the capillary and bubble growth time are affected by perturbations to the water hardness. The time it takes for the bubble to depart the capillary was estimated using the following nonlinear data analysis methods: time delay ( τ ), attractor reconstructions, correlation dimension ( D ), and largest Lyapunov exponent ( λ ). All estimates demonstrate that the pressure fluctuations in the c–c aqueous solutions and extent of liquid solution penetration into the capillary during the time between subsequent bubble departures behave chaotically. Furthermore, this work demonstrates that the dynamics of bubble formation along with the bubble waiting time are very sensitive to small perturbation in the physical properties of the liquid, and this sensitivity has a significant effect on the observed chaotic behaviour.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-00375-7