Loading…
Unsupervised representation learning of chromatin images identifies changes in cell state and tissue organization in DCIS
Ductal carcinoma in situ (DCIS) is a pre-invasive tumor that can progress to invasive breast cancer, a leading cause of cancer death. We generate a large-scale tissue microarray dataset of chromatin images, from 560 samples from 122 female patients in 3 disease stages and 11 phenotypic categories. U...
Saved in:
Published in: | Nature communications 2024-07, Vol.15 (1), p.6112-16, Article 6112 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-ea86b398ad935e0243af42e0d74842b3e70358645ae984eb31a5ad6085a26f893 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 6112 |
container_title | Nature communications |
container_volume | 15 |
creator | Zhang, Xinyi Venkatachalapathy, Saradha Paysan, Daniel Schaerer, Paulina Tripodo, Claudio Uhler, Caroline Shivashankar, G. V. |
description | Ductal carcinoma in situ (DCIS) is a pre-invasive tumor that can progress to invasive breast cancer, a leading cause of cancer death. We generate a large-scale tissue microarray dataset of chromatin images, from 560 samples from 122 female patients in 3 disease stages and 11 phenotypic categories. Using representation learning on chromatin images alone, without multiplexed staining or high-throughput sequencing, we identify eight morphological cell states and tissue features marking DCIS. All cell states are observed in all disease stages with different proportions, indicating that cell states enriched in invasive cancer exist in small fractions in normal breast tissue. Tissue-level analysis reveals significant changes in the spatial organization of cell states across disease stages, which is predictive of disease stage and phenotypic category. Taken together, we show that chromatin imaging represents a powerful measure of cell state and disease stage of DCIS, providing a simple and effective tumor biomarker.
Monitoring the hallmarks and progression of ductal carcinoma in situ (DCIS) remains challenging. Here, the authors use an unsupervised representation learning approach on chromatin images to discern multiple morphological cell states and tissue features in DCIS. |
doi_str_mv | 10.1038/s41467-024-50285-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7d7644fe553d46ba91722e856b0dcf58</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7d7644fe553d46ba91722e856b0dcf58</doaj_id><sourcerecordid>3082711068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-ea86b398ad935e0243af42e0d74842b3e70358645ae984eb31a5ad6085a26f893</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIVqV_gAOyxIVLwN9xTggtXytV4gA9W5N4sutV1l7spFL59Xg3pbQc8MWjmTfPb56nql4y-pZRYd5lyaRuasplrSg3qmZPqnNOJatZw8XTB_FZdZnzjpYjWmakfF6diZYKyhp9Xt1ehzwfMN34jI4kPCTMGCaYfAxkREjBhw2JA-m3Ke5LOhC_hw1m4l3B-cGXsN9COKUC6XEcSS79SCA4MvmcZyQxbSD4XwtrQX1crb-_qJ4NMGa8vLsvquvPn36svtZX376sVx-u6l5yPtUIRneiNeBaobCMK2CQHKlrpJG8E9hQoYyWCrA1EjvBQIHT1CjgejCtuKjWC6-LsLOHVOSnWxvB21OiSLOQJt-PaBvXaCkHVEo4qTtoi30cjdIddf2gTOF6v3Ad5m6Pri8OJBgfkT6uBL-1m3hjGeMNU1wUhjd3DCn-nDFPdu_z0TQIGOdsBTXcCNG0R-Gv_4Hu4pxC8eqEahij-iiJL6g-xZwTDvdqGLXHTbHLpthinT1timWl6dXDOe5b_uxFAYgFkEup_G36-_Z_aH8D3D3KMw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082711068</pqid></control><display><type>article</type><title>Unsupervised representation learning of chromatin images identifies changes in cell state and tissue organization in DCIS</title><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhang, Xinyi ; Venkatachalapathy, Saradha ; Paysan, Daniel ; Schaerer, Paulina ; Tripodo, Claudio ; Uhler, Caroline ; Shivashankar, G. V.</creator><creatorcontrib>Zhang, Xinyi ; Venkatachalapathy, Saradha ; Paysan, Daniel ; Schaerer, Paulina ; Tripodo, Claudio ; Uhler, Caroline ; Shivashankar, G. V.</creatorcontrib><description>Ductal carcinoma in situ (DCIS) is a pre-invasive tumor that can progress to invasive breast cancer, a leading cause of cancer death. We generate a large-scale tissue microarray dataset of chromatin images, from 560 samples from 122 female patients in 3 disease stages and 11 phenotypic categories. Using representation learning on chromatin images alone, without multiplexed staining or high-throughput sequencing, we identify eight morphological cell states and tissue features marking DCIS. All cell states are observed in all disease stages with different proportions, indicating that cell states enriched in invasive cancer exist in small fractions in normal breast tissue. Tissue-level analysis reveals significant changes in the spatial organization of cell states across disease stages, which is predictive of disease stage and phenotypic category. Taken together, we show that chromatin imaging represents a powerful measure of cell state and disease stage of DCIS, providing a simple and effective tumor biomarker.
Monitoring the hallmarks and progression of ductal carcinoma in situ (DCIS) remains challenging. Here, the authors use an unsupervised representation learning approach on chromatin images to discern multiple morphological cell states and tissue features in DCIS.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-50285-1</identifier><identifier>PMID: 39030176</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 14 ; 14/19 ; 631/114/1305 ; 631/67/1347 ; 631/67/2321 ; 631/67/327 ; Biomarkers ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Breast cancer ; Breast carcinoma ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Carcinoma, Intraductal, Noninfiltrating - genetics ; Carcinoma, Intraductal, Noninfiltrating - metabolism ; Carcinoma, Intraductal, Noninfiltrating - pathology ; Chromatin ; Chromatin - metabolism ; Female ; Humanities and Social Sciences ; Humans ; Image Processing, Computer-Assisted - methods ; Invasiveness ; Learning ; Medical imaging ; Morphology ; multidisciplinary ; Neoplasm Staging ; Next-generation sequencing ; Representations ; Science ; Science (multidisciplinary) ; Tissue Array Analysis ; Tissues ; Tumors ; Unsupervised Machine Learning</subject><ispartof>Nature communications, 2024-07, Vol.15 (1), p.6112-16, Article 6112</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-ea86b398ad935e0243af42e0d74842b3e70358645ae984eb31a5ad6085a26f893</cites><orcidid>0000-0003-4996-4698 ; 0000-0002-7008-0216 ; 0000-0003-0954-4496 ; 0000-0003-4995-7527 ; 0000-0002-0821-6231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3082711068/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3082711068?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39030176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xinyi</creatorcontrib><creatorcontrib>Venkatachalapathy, Saradha</creatorcontrib><creatorcontrib>Paysan, Daniel</creatorcontrib><creatorcontrib>Schaerer, Paulina</creatorcontrib><creatorcontrib>Tripodo, Claudio</creatorcontrib><creatorcontrib>Uhler, Caroline</creatorcontrib><creatorcontrib>Shivashankar, G. V.</creatorcontrib><title>Unsupervised representation learning of chromatin images identifies changes in cell state and tissue organization in DCIS</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Ductal carcinoma in situ (DCIS) is a pre-invasive tumor that can progress to invasive breast cancer, a leading cause of cancer death. We generate a large-scale tissue microarray dataset of chromatin images, from 560 samples from 122 female patients in 3 disease stages and 11 phenotypic categories. Using representation learning on chromatin images alone, without multiplexed staining or high-throughput sequencing, we identify eight morphological cell states and tissue features marking DCIS. All cell states are observed in all disease stages with different proportions, indicating that cell states enriched in invasive cancer exist in small fractions in normal breast tissue. Tissue-level analysis reveals significant changes in the spatial organization of cell states across disease stages, which is predictive of disease stage and phenotypic category. Taken together, we show that chromatin imaging represents a powerful measure of cell state and disease stage of DCIS, providing a simple and effective tumor biomarker.
Monitoring the hallmarks and progression of ductal carcinoma in situ (DCIS) remains challenging. Here, the authors use an unsupervised representation learning approach on chromatin images to discern multiple morphological cell states and tissue features in DCIS.</description><subject>13/1</subject><subject>14</subject><subject>14/19</subject><subject>631/114/1305</subject><subject>631/67/1347</subject><subject>631/67/2321</subject><subject>631/67/327</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Breast cancer</subject><subject>Breast carcinoma</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Carcinoma, Intraductal, Noninfiltrating - genetics</subject><subject>Carcinoma, Intraductal, Noninfiltrating - metabolism</subject><subject>Carcinoma, Intraductal, Noninfiltrating - pathology</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Invasiveness</subject><subject>Learning</subject><subject>Medical imaging</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Neoplasm Staging</subject><subject>Next-generation sequencing</subject><subject>Representations</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tissue Array Analysis</subject><subject>Tissues</subject><subject>Tumors</subject><subject>Unsupervised Machine Learning</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAQjRCIVqV_gAOyxIVLwN9xTggtXytV4gA9W5N4sutV1l7spFL59Xg3pbQc8MWjmTfPb56nql4y-pZRYd5lyaRuasplrSg3qmZPqnNOJatZw8XTB_FZdZnzjpYjWmakfF6diZYKyhp9Xt1ehzwfMN34jI4kPCTMGCaYfAxkREjBhw2JA-m3Ke5LOhC_hw1m4l3B-cGXsN9COKUC6XEcSS79SCA4MvmcZyQxbSD4XwtrQX1crb-_qJ4NMGa8vLsvquvPn36svtZX376sVx-u6l5yPtUIRneiNeBaobCMK2CQHKlrpJG8E9hQoYyWCrA1EjvBQIHT1CjgejCtuKjWC6-LsLOHVOSnWxvB21OiSLOQJt-PaBvXaCkHVEo4qTtoi30cjdIddf2gTOF6v3Ad5m6Pri8OJBgfkT6uBL-1m3hjGeMNU1wUhjd3DCn-nDFPdu_z0TQIGOdsBTXcCNG0R-Gv_4Hu4pxC8eqEahij-iiJL6g-xZwTDvdqGLXHTbHLpthinT1timWl6dXDOe5b_uxFAYgFkEup_G36-_Z_aH8D3D3KMw</recordid><startdate>20240720</startdate><enddate>20240720</enddate><creator>Zhang, Xinyi</creator><creator>Venkatachalapathy, Saradha</creator><creator>Paysan, Daniel</creator><creator>Schaerer, Paulina</creator><creator>Tripodo, Claudio</creator><creator>Uhler, Caroline</creator><creator>Shivashankar, G. V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4996-4698</orcidid><orcidid>https://orcid.org/0000-0002-7008-0216</orcidid><orcidid>https://orcid.org/0000-0003-0954-4496</orcidid><orcidid>https://orcid.org/0000-0003-4995-7527</orcidid><orcidid>https://orcid.org/0000-0002-0821-6231</orcidid></search><sort><creationdate>20240720</creationdate><title>Unsupervised representation learning of chromatin images identifies changes in cell state and tissue organization in DCIS</title><author>Zhang, Xinyi ; Venkatachalapathy, Saradha ; Paysan, Daniel ; Schaerer, Paulina ; Tripodo, Claudio ; Uhler, Caroline ; Shivashankar, G. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-ea86b398ad935e0243af42e0d74842b3e70358645ae984eb31a5ad6085a26f893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/1</topic><topic>14</topic><topic>14/19</topic><topic>631/114/1305</topic><topic>631/67/1347</topic><topic>631/67/2321</topic><topic>631/67/327</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Breast cancer</topic><topic>Breast carcinoma</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Carcinoma, Intraductal, Noninfiltrating - genetics</topic><topic>Carcinoma, Intraductal, Noninfiltrating - metabolism</topic><topic>Carcinoma, Intraductal, Noninfiltrating - pathology</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Invasiveness</topic><topic>Learning</topic><topic>Medical imaging</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Neoplasm Staging</topic><topic>Next-generation sequencing</topic><topic>Representations</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tissue Array Analysis</topic><topic>Tissues</topic><topic>Tumors</topic><topic>Unsupervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinyi</creatorcontrib><creatorcontrib>Venkatachalapathy, Saradha</creatorcontrib><creatorcontrib>Paysan, Daniel</creatorcontrib><creatorcontrib>Schaerer, Paulina</creatorcontrib><creatorcontrib>Tripodo, Claudio</creatorcontrib><creatorcontrib>Uhler, Caroline</creatorcontrib><creatorcontrib>Shivashankar, G. V.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinyi</au><au>Venkatachalapathy, Saradha</au><au>Paysan, Daniel</au><au>Schaerer, Paulina</au><au>Tripodo, Claudio</au><au>Uhler, Caroline</au><au>Shivashankar, G. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised representation learning of chromatin images identifies changes in cell state and tissue organization in DCIS</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-07-20</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>6112</spage><epage>16</epage><pages>6112-16</pages><artnum>6112</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Ductal carcinoma in situ (DCIS) is a pre-invasive tumor that can progress to invasive breast cancer, a leading cause of cancer death. We generate a large-scale tissue microarray dataset of chromatin images, from 560 samples from 122 female patients in 3 disease stages and 11 phenotypic categories. Using representation learning on chromatin images alone, without multiplexed staining or high-throughput sequencing, we identify eight morphological cell states and tissue features marking DCIS. All cell states are observed in all disease stages with different proportions, indicating that cell states enriched in invasive cancer exist in small fractions in normal breast tissue. Tissue-level analysis reveals significant changes in the spatial organization of cell states across disease stages, which is predictive of disease stage and phenotypic category. Taken together, we show that chromatin imaging represents a powerful measure of cell state and disease stage of DCIS, providing a simple and effective tumor biomarker.
Monitoring the hallmarks and progression of ductal carcinoma in situ (DCIS) remains challenging. Here, the authors use an unsupervised representation learning approach on chromatin images to discern multiple morphological cell states and tissue features in DCIS.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39030176</pmid><doi>10.1038/s41467-024-50285-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4996-4698</orcidid><orcidid>https://orcid.org/0000-0002-7008-0216</orcidid><orcidid>https://orcid.org/0000-0003-0954-4496</orcidid><orcidid>https://orcid.org/0000-0003-4995-7527</orcidid><orcidid>https://orcid.org/0000-0002-0821-6231</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-07, Vol.15 (1), p.6112-16, Article 6112 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7d7644fe553d46ba91722e856b0dcf58 |
source | Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 14 14/19 631/114/1305 631/67/1347 631/67/2321 631/67/327 Biomarkers Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Breast cancer Breast carcinoma Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology Carcinoma, Intraductal, Noninfiltrating - genetics Carcinoma, Intraductal, Noninfiltrating - metabolism Carcinoma, Intraductal, Noninfiltrating - pathology Chromatin Chromatin - metabolism Female Humanities and Social Sciences Humans Image Processing, Computer-Assisted - methods Invasiveness Learning Medical imaging Morphology multidisciplinary Neoplasm Staging Next-generation sequencing Representations Science Science (multidisciplinary) Tissue Array Analysis Tissues Tumors Unsupervised Machine Learning |
title | Unsupervised representation learning of chromatin images identifies changes in cell state and tissue organization in DCIS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20representation%20learning%20of%20chromatin%20images%20identifies%20changes%20in%20cell%20state%20and%20tissue%20organization%20in%20DCIS&rft.jtitle=Nature%20communications&rft.au=Zhang,%20Xinyi&rft.date=2024-07-20&rft.volume=15&rft.issue=1&rft.spage=6112&rft.epage=16&rft.pages=6112-16&rft.artnum=6112&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-50285-1&rft_dat=%3Cproquest_doaj_%3E3082711068%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-ea86b398ad935e0243af42e0d74842b3e70358645ae984eb31a5ad6085a26f893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082711068&rft_id=info:pmid/39030176&rfr_iscdi=true |