Loading…

The miscibility gap between the rock salt and wurtzite phases in the MgO–ZnO binary system to 3.5 GPa

At ambient pressure, MgO crystallizes in the rock salt (B1) structure, whereas ZnO crystallizes in the wurtzite structure (B4). The asymmetric miscibility gap between these two structures in the MgO–ZnO binary system narrows with increasing pressure, terminating at the wurtzite-to-rock-salt phase tr...

Full description

Saved in:
Bibliographic Details
Published in:European journal of mineralogy (Stuttgart) 2023-11, Vol.35 (6), p.1051-1071
Main Authors: Farmer, Nicholas, O'Neill, Hugh St. C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a399t-e7589944faa6ed3c7ec7e8d2c40b075e9681f5e715546c3f5571d3cc390202673
cites cdi_FETCH-LOGICAL-a399t-e7589944faa6ed3c7ec7e8d2c40b075e9681f5e715546c3f5571d3cc390202673
container_end_page 1071
container_issue 6
container_start_page 1051
container_title European journal of mineralogy (Stuttgart)
container_volume 35
creator Farmer, Nicholas
O'Neill, Hugh St. C
description At ambient pressure, MgO crystallizes in the rock salt (B1) structure, whereas ZnO crystallizes in the wurtzite structure (B4). The asymmetric miscibility gap between these two structures in the MgO–ZnO binary system narrows with increasing pressure, terminating at the wurtzite-to-rock-salt phase transition in pure ZnO, which occurs at approximately 5 GPa at 1000 ∘C. Despite their essential simplicity, the pressure–temperature–composition (P–T–X) relations in the MgO–ZnO binary system have been sparsely studied experimentally, with disparate results that are inconsistent with available thermodynamic data. Here we report the experimental determination of the P–T–X relations of the miscibility gap from 940 to 1500 ∘C and 0 to 3.5 GPa, which we combine with calorimetric and equation-of-state data from the literature and on the transition in endmember ZnO, to build a thermodynamic model that resolves many of the inconsistencies. The model treats the rock salt phase as an ideal solution (no excess Gibbs free energy of mixing), while in the wurtzite phase the MgO component follows Henry's law and the ZnO component Raoult's law in the range of compositions accessed experimentally. However, there is an inconsistency between the partial molar volume of wurtzite-structured MgO deduced from this model and that inferred from lattice parameter measurements by X-ray diffraction in the quenched samples. This discrepancy may be caused by unquenchable disordering of some significant fraction of the substituting Mg2+ into normally vacant octahedral interstices of the wurtzite structure.
doi_str_mv 10.5194/ejm-35-1051-2023
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7d81af98e0b34f42b48f7a2f8fec85d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774385622</galeid><doaj_id>oai_doaj_org_article_7d81af98e0b34f42b48f7a2f8fec85d0</doaj_id><sourcerecordid>A774385622</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-e7589944faa6ed3c7ec7e8d2c40b075e9681f5e715546c3f5571d3cc390202673</originalsourceid><addsrcrecordid>eNptkT1vFDEQhlcIJEKgp7REvYe9ttd2GUUQIgUdRWhorFnv-OLjdn3YPkVHlZY6_zC_JD4O8SEhW7I188yrmXmb5jWjC8mMeIvrqeWyZVSytqMdf9KcsJ6pVlDGnv71f968yHlNKeNC0JMmXN8gmUJ2YQibUPZkBVsyYLlFnEmpuRTdV5JhUwjMI7ndpfI9FCTbG8iYSThCH1fLh7v7L_OSDGGGtCd5nwtOpETCF_Lh7sfFJ3jZPPOwyfjq13vafH7_7vr8Q3u1vLg8P7tqgRtTWlRSGyOEB-hx5E5hvXrsnKADVRJNr5mXqJiUonfcS6lYxRw3tI7dK37aXB51xwhru01hqg3ZCMH-DMS0spBKcBu0atQMvNFIBy686AahvYLOa49Oy5FWrTdHrW2K33aYi13HXZpr-7bThishGWN_qBVU0TD7WBK4w1LtmVKCa9l3XaUW_6HqGXEKLs7oQ43_U0CPBS7FnBP638Mwag-e2-q55dIePLcHz_kjIEOefA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893745111</pqid></control><display><type>article</type><title>The miscibility gap between the rock salt and wurtzite phases in the MgO–ZnO binary system to 3.5 GPa</title><source>Directory of Open Access Journals(OpenAccess)</source><source>Publicly Available Content (ProQuest)</source><creator>Farmer, Nicholas ; O'Neill, Hugh St. C</creator><creatorcontrib>Farmer, Nicholas ; O'Neill, Hugh St. C</creatorcontrib><description>At ambient pressure, MgO crystallizes in the rock salt (B1) structure, whereas ZnO crystallizes in the wurtzite structure (B4). The asymmetric miscibility gap between these two structures in the MgO–ZnO binary system narrows with increasing pressure, terminating at the wurtzite-to-rock-salt phase transition in pure ZnO, which occurs at approximately 5 GPa at 1000 ∘C. Despite their essential simplicity, the pressure–temperature–composition (P–T–X) relations in the MgO–ZnO binary system have been sparsely studied experimentally, with disparate results that are inconsistent with available thermodynamic data. Here we report the experimental determination of the P–T–X relations of the miscibility gap from 940 to 1500 ∘C and 0 to 3.5 GPa, which we combine with calorimetric and equation-of-state data from the literature and on the transition in endmember ZnO, to build a thermodynamic model that resolves many of the inconsistencies. The model treats the rock salt phase as an ideal solution (no excess Gibbs free energy of mixing), while in the wurtzite phase the MgO component follows Henry's law and the ZnO component Raoult's law in the range of compositions accessed experimentally. However, there is an inconsistency between the partial molar volume of wurtzite-structured MgO deduced from this model and that inferred from lattice parameter measurements by X-ray diffraction in the quenched samples. This discrepancy may be caused by unquenchable disordering of some significant fraction of the substituting Mg2+ into normally vacant octahedral interstices of the wurtzite structure.</description><identifier>ISSN: 1617-4011</identifier><identifier>ISSN: 0935-1221</identifier><identifier>EISSN: 1617-4011</identifier><identifier>DOI: 10.5194/ejm-35-1051-2023</identifier><language>eng</language><publisher>Göttingen: Copernicus GmbH</publisher><subject>Analysis ; Binary system ; Chemical properties ; Composition ; Equilibrium ; Experiments ; Gibbs free energy ; Henrys law ; Interstices ; Magnesium compounds ; Magnesium oxide ; Miscibility ; Molar volume ; Phase transitions ; Pressure ; Raoults law ; Rock-salt ; Rocks ; Salt ; Salts ; Solid solutions ; Solubility ; Temperature ; Thermodynamic models ; Thermodynamics ; Wurtzite ; X-ray diffraction ; Zinc oxide</subject><ispartof>European journal of mineralogy (Stuttgart), 2023-11, Vol.35 (6), p.1051-1071</ispartof><rights>COPYRIGHT 2023 Copernicus GmbH</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-e7589944faa6ed3c7ec7e8d2c40b075e9681f5e715546c3f5571d3cc390202673</citedby><cites>FETCH-LOGICAL-a399t-e7589944faa6ed3c7ec7e8d2c40b075e9681f5e715546c3f5571d3cc390202673</cites><orcidid>0000-0002-8658-4718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2893745111/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2893745111?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Farmer, Nicholas</creatorcontrib><creatorcontrib>O'Neill, Hugh St. C</creatorcontrib><title>The miscibility gap between the rock salt and wurtzite phases in the MgO–ZnO binary system to 3.5 GPa</title><title>European journal of mineralogy (Stuttgart)</title><description>At ambient pressure, MgO crystallizes in the rock salt (B1) structure, whereas ZnO crystallizes in the wurtzite structure (B4). The asymmetric miscibility gap between these two structures in the MgO–ZnO binary system narrows with increasing pressure, terminating at the wurtzite-to-rock-salt phase transition in pure ZnO, which occurs at approximately 5 GPa at 1000 ∘C. Despite their essential simplicity, the pressure–temperature–composition (P–T–X) relations in the MgO–ZnO binary system have been sparsely studied experimentally, with disparate results that are inconsistent with available thermodynamic data. Here we report the experimental determination of the P–T–X relations of the miscibility gap from 940 to 1500 ∘C and 0 to 3.5 GPa, which we combine with calorimetric and equation-of-state data from the literature and on the transition in endmember ZnO, to build a thermodynamic model that resolves many of the inconsistencies. The model treats the rock salt phase as an ideal solution (no excess Gibbs free energy of mixing), while in the wurtzite phase the MgO component follows Henry's law and the ZnO component Raoult's law in the range of compositions accessed experimentally. However, there is an inconsistency between the partial molar volume of wurtzite-structured MgO deduced from this model and that inferred from lattice parameter measurements by X-ray diffraction in the quenched samples. This discrepancy may be caused by unquenchable disordering of some significant fraction of the substituting Mg2+ into normally vacant octahedral interstices of the wurtzite structure.</description><subject>Analysis</subject><subject>Binary system</subject><subject>Chemical properties</subject><subject>Composition</subject><subject>Equilibrium</subject><subject>Experiments</subject><subject>Gibbs free energy</subject><subject>Henrys law</subject><subject>Interstices</subject><subject>Magnesium compounds</subject><subject>Magnesium oxide</subject><subject>Miscibility</subject><subject>Molar volume</subject><subject>Phase transitions</subject><subject>Pressure</subject><subject>Raoults law</subject><subject>Rock-salt</subject><subject>Rocks</subject><subject>Salt</subject><subject>Salts</subject><subject>Solid solutions</subject><subject>Solubility</subject><subject>Temperature</subject><subject>Thermodynamic models</subject><subject>Thermodynamics</subject><subject>Wurtzite</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><issn>1617-4011</issn><issn>0935-1221</issn><issn>1617-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkT1vFDEQhlcIJEKgp7REvYe9ttd2GUUQIgUdRWhorFnv-OLjdn3YPkVHlZY6_zC_JD4O8SEhW7I188yrmXmb5jWjC8mMeIvrqeWyZVSytqMdf9KcsJ6pVlDGnv71f968yHlNKeNC0JMmXN8gmUJ2YQibUPZkBVsyYLlFnEmpuRTdV5JhUwjMI7ndpfI9FCTbG8iYSThCH1fLh7v7L_OSDGGGtCd5nwtOpETCF_Lh7sfFJ3jZPPOwyfjq13vafH7_7vr8Q3u1vLg8P7tqgRtTWlRSGyOEB-hx5E5hvXrsnKADVRJNr5mXqJiUonfcS6lYxRw3tI7dK37aXB51xwhru01hqg3ZCMH-DMS0spBKcBu0atQMvNFIBy686AahvYLOa49Oy5FWrTdHrW2K33aYi13HXZpr-7bThishGWN_qBVU0TD7WBK4w1LtmVKCa9l3XaUW_6HqGXEKLs7oQ43_U0CPBS7FnBP638Mwag-e2-q55dIePLcHz_kjIEOefA</recordid><startdate>20231127</startdate><enddate>20231127</enddate><creator>Farmer, Nicholas</creator><creator>O'Neill, Hugh St. C</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8658-4718</orcidid></search><sort><creationdate>20231127</creationdate><title>The miscibility gap between the rock salt and wurtzite phases in the MgO–ZnO binary system to 3.5 GPa</title><author>Farmer, Nicholas ; O'Neill, Hugh St. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-e7589944faa6ed3c7ec7e8d2c40b075e9681f5e715546c3f5571d3cc390202673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Binary system</topic><topic>Chemical properties</topic><topic>Composition</topic><topic>Equilibrium</topic><topic>Experiments</topic><topic>Gibbs free energy</topic><topic>Henrys law</topic><topic>Interstices</topic><topic>Magnesium compounds</topic><topic>Magnesium oxide</topic><topic>Miscibility</topic><topic>Molar volume</topic><topic>Phase transitions</topic><topic>Pressure</topic><topic>Raoults law</topic><topic>Rock-salt</topic><topic>Rocks</topic><topic>Salt</topic><topic>Salts</topic><topic>Solid solutions</topic><topic>Solubility</topic><topic>Temperature</topic><topic>Thermodynamic models</topic><topic>Thermodynamics</topic><topic>Wurtzite</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farmer, Nicholas</creatorcontrib><creatorcontrib>O'Neill, Hugh St. C</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>European journal of mineralogy (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farmer, Nicholas</au><au>O'Neill, Hugh St. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The miscibility gap between the rock salt and wurtzite phases in the MgO–ZnO binary system to 3.5 GPa</atitle><jtitle>European journal of mineralogy (Stuttgart)</jtitle><date>2023-11-27</date><risdate>2023</risdate><volume>35</volume><issue>6</issue><spage>1051</spage><epage>1071</epage><pages>1051-1071</pages><issn>1617-4011</issn><issn>0935-1221</issn><eissn>1617-4011</eissn><abstract>At ambient pressure, MgO crystallizes in the rock salt (B1) structure, whereas ZnO crystallizes in the wurtzite structure (B4). The asymmetric miscibility gap between these two structures in the MgO–ZnO binary system narrows with increasing pressure, terminating at the wurtzite-to-rock-salt phase transition in pure ZnO, which occurs at approximately 5 GPa at 1000 ∘C. Despite their essential simplicity, the pressure–temperature–composition (P–T–X) relations in the MgO–ZnO binary system have been sparsely studied experimentally, with disparate results that are inconsistent with available thermodynamic data. Here we report the experimental determination of the P–T–X relations of the miscibility gap from 940 to 1500 ∘C and 0 to 3.5 GPa, which we combine with calorimetric and equation-of-state data from the literature and on the transition in endmember ZnO, to build a thermodynamic model that resolves many of the inconsistencies. The model treats the rock salt phase as an ideal solution (no excess Gibbs free energy of mixing), while in the wurtzite phase the MgO component follows Henry's law and the ZnO component Raoult's law in the range of compositions accessed experimentally. However, there is an inconsistency between the partial molar volume of wurtzite-structured MgO deduced from this model and that inferred from lattice parameter measurements by X-ray diffraction in the quenched samples. This discrepancy may be caused by unquenchable disordering of some significant fraction of the substituting Mg2+ into normally vacant octahedral interstices of the wurtzite structure.</abstract><cop>Göttingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/ejm-35-1051-2023</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8658-4718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-4011
ispartof European journal of mineralogy (Stuttgart), 2023-11, Vol.35 (6), p.1051-1071
issn 1617-4011
0935-1221
1617-4011
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7d81af98e0b34f42b48f7a2f8fec85d0
source Directory of Open Access Journals(OpenAccess); Publicly Available Content (ProQuest)
subjects Analysis
Binary system
Chemical properties
Composition
Equilibrium
Experiments
Gibbs free energy
Henrys law
Interstices
Magnesium compounds
Magnesium oxide
Miscibility
Molar volume
Phase transitions
Pressure
Raoults law
Rock-salt
Rocks
Salt
Salts
Solid solutions
Solubility
Temperature
Thermodynamic models
Thermodynamics
Wurtzite
X-ray diffraction
Zinc oxide
title The miscibility gap between the rock salt and wurtzite phases in the MgO–ZnO binary system to 3.5 GPa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20miscibility%20gap%20between%20the%20rock%20salt%20and%20wurtzite%20phases%20in%20the%20MgO%E2%80%93ZnO%20binary%20system%20to%203.5%E2%80%89GPa&rft.jtitle=European%20journal%20of%20mineralogy%20(Stuttgart)&rft.au=Farmer,%20Nicholas&rft.date=2023-11-27&rft.volume=35&rft.issue=6&rft.spage=1051&rft.epage=1071&rft.pages=1051-1071&rft.issn=1617-4011&rft.eissn=1617-4011&rft_id=info:doi/10.5194/ejm-35-1051-2023&rft_dat=%3Cgale_doaj_%3EA774385622%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a399t-e7589944faa6ed3c7ec7e8d2c40b075e9681f5e715546c3f5571d3cc390202673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893745111&rft_id=info:pmid/&rft_galeid=A774385622&rfr_iscdi=true