Loading…

Supervised latent factor modeling isolates cell-type-specific transcriptomic modules that underlie Alzheimer’s disease progression

Late onset Alzheimer’s disease (AD) is a progressive neurodegenerative disease, with brain changes beginning years before symptoms surface. AD is characterized by neuronal loss, the classic feature of the disease that underlies brain atrophy. However, GWAS reports and recent single-nucleus RNA seque...

Full description

Saved in:
Bibliographic Details
Published in:Communications biology 2024-05, Vol.7 (1), p.591-19, Article 591
Main Authors: Hodgson, Liam, Li, Yue, Iturria-Medina, Yasser, Stratton, Jo Anne, Wolf, Guy, Krishnaswamy, Smita, Bennett, David A., Bzdok, Danilo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c492t-d5c226d514de543b6d55ce3879ec058e1f2611bb6f60495d1442da3ffc26bfa43
container_end_page 19
container_issue 1
container_start_page 591
container_title Communications biology
container_volume 7
creator Hodgson, Liam
Li, Yue
Iturria-Medina, Yasser
Stratton, Jo Anne
Wolf, Guy
Krishnaswamy, Smita
Bennett, David A.
Bzdok, Danilo
description Late onset Alzheimer’s disease (AD) is a progressive neurodegenerative disease, with brain changes beginning years before symptoms surface. AD is characterized by neuronal loss, the classic feature of the disease that underlies brain atrophy. However, GWAS reports and recent single-nucleus RNA sequencing (snRNA-seq) efforts have highlighted that glial cells, particularly microglia, claim a central role in AD pathophysiology. Here, we tailor pattern-learning algorithms to explore distinct gene programs by integrating the entire transcriptome, yielding distributed AD-predictive modules within the brain’s major cell-types. We show that these learned modules are biologically meaningful through the identification of new and relevant enriched signaling cascades. The predictive nature of our modules, especially in microglia, allows us to infer each subject’s progression along a disease pseudo-trajectory, confirmed by post-mortem pathological brain tissue markers. Additionally, we quantify the interplay between pairs of cell-type modules in the AD brain, and localized known AD risk genes to enriched module gene programs. Our collective findings advocate for a transition from cell-type-specificity to gene modules specificity to unlock the potential of unique gene programs, recasting the roles of recently reported genome-wide AD risk loci. Designing a supervised latent factor framework for snRNA-seq human brain, the authors find distinct Alzheimer’s-predictive gene modules across celltypes, suggesting subcelltype disease progression trajectories.
doi_str_mv 10.1038/s42003-024-06273-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7d8c85b5304d4fe2a88eedbabca21c21</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7d8c85b5304d4fe2a88eedbabca21c21</doaj_id><sourcerecordid>3056669854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-d5c226d514de543b6d55ce3879ec058e1f2611bb6f60495d1442da3ffc26bfa43</originalsourceid><addsrcrecordid>eNp9Ustu1TAQjRCIVqU_wAJZYsMm4Pd1VqiqeFSqxAJYW449yfVVEgfbqdSuWPAT_B5fgu9NKS0LVh7PnDkzZ3Sq6jnBrwlm6k3iFGNWY8prLOmG1epRdUxZ09RMcvr4XnxUnaa0wxiTpmkk40-rI6Y2EnPFjqsfn5cZ4pVP4NBgMkwZdcbmENEYHAx-6pFPYV9JyMIw1Pl6hjrNYH3nLcrRTMlGP-cwlm_pWYaCzFuT0TI5iIMHdDbcbMGPEH99_5mQK7NMAjTH0EdIyYfpWfWkM0OC09v3pPr6_t2X84_15acPF-dnl7XlDc21E5ZS6QThDgRnbQmFhaKlAYuFAtJRSUjbyq6Ia4QjnFNnWNdZKtvOcHZSXay8LpidnqMfTbzWwXh9SITYaxOztwPojVNWiVYwzB3vgBqlAFxrWmsosZQUrrcr17y0IzhbLhfN8ID0YWXyW92HK00IwYRLVhhe3TLE8G2BlPXo0_7GZoKwJM2wkFI2SuwXf_kPdBeWOJVbHVB4U-TLgqIrysaQUoTubhuC9d40ejWNLqbRB9NoVZpe3Ndx1_LHIgXAVkAqpamH-Hf2f2h_A77V0kI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056070586</pqid></control><display><type>article</type><title>Supervised latent factor modeling isolates cell-type-specific transcriptomic modules that underlie Alzheimer’s disease progression</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hodgson, Liam ; Li, Yue ; Iturria-Medina, Yasser ; Stratton, Jo Anne ; Wolf, Guy ; Krishnaswamy, Smita ; Bennett, David A. ; Bzdok, Danilo</creator><creatorcontrib>Hodgson, Liam ; Li, Yue ; Iturria-Medina, Yasser ; Stratton, Jo Anne ; Wolf, Guy ; Krishnaswamy, Smita ; Bennett, David A. ; Bzdok, Danilo</creatorcontrib><description>Late onset Alzheimer’s disease (AD) is a progressive neurodegenerative disease, with brain changes beginning years before symptoms surface. AD is characterized by neuronal loss, the classic feature of the disease that underlies brain atrophy. However, GWAS reports and recent single-nucleus RNA sequencing (snRNA-seq) efforts have highlighted that glial cells, particularly microglia, claim a central role in AD pathophysiology. Here, we tailor pattern-learning algorithms to explore distinct gene programs by integrating the entire transcriptome, yielding distributed AD-predictive modules within the brain’s major cell-types. We show that these learned modules are biologically meaningful through the identification of new and relevant enriched signaling cascades. The predictive nature of our modules, especially in microglia, allows us to infer each subject’s progression along a disease pseudo-trajectory, confirmed by post-mortem pathological brain tissue markers. Additionally, we quantify the interplay between pairs of cell-type modules in the AD brain, and localized known AD risk genes to enriched module gene programs. Our collective findings advocate for a transition from cell-type-specificity to gene modules specificity to unlock the potential of unique gene programs, recasting the roles of recently reported genome-wide AD risk loci. Designing a supervised latent factor framework for snRNA-seq human brain, the authors find distinct Alzheimer’s-predictive gene modules across celltypes, suggesting subcelltype disease progression trajectories.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-024-06273-8</identifier><identifier>PMID: 38760483</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 38/43 ; 38/62 ; 631/114/2397 ; 631/208/199 ; Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer's disease ; Artificial intelligence ; Atrophy ; Biomedical and Life Sciences ; Brain ; Brain - metabolism ; Brain - pathology ; Computer science ; Disease ; Disease Progression ; Gene expression ; Gene Expression Profiling ; Gene Regulatory Networks ; Genomes ; Genotype &amp; phenotype ; Glial cells ; Humans ; Life Sciences ; Machine learning ; Medical imaging ; Medicine ; Microglia ; Microglia - metabolism ; Microglia - pathology ; Neurodegenerative diseases ; Neuroimaging ; Pathophysiology ; snRNA ; Transcriptome ; Transcriptomes ; Transcriptomics</subject><ispartof>Communications biology, 2024-05, Vol.7 (1), p.591-19, Article 591</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-d5c226d514de543b6d55ce3879ec058e1f2611bb6f60495d1442da3ffc26bfa43</cites><orcidid>0000-0001-5823-1985 ; 0009-0001-8462-9863 ; 0000-0003-3844-4865 ; 0000-0002-9345-0347 ; 0000-0003-3466-6620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101463/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3056070586?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38760483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hodgson, Liam</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Iturria-Medina, Yasser</creatorcontrib><creatorcontrib>Stratton, Jo Anne</creatorcontrib><creatorcontrib>Wolf, Guy</creatorcontrib><creatorcontrib>Krishnaswamy, Smita</creatorcontrib><creatorcontrib>Bennett, David A.</creatorcontrib><creatorcontrib>Bzdok, Danilo</creatorcontrib><title>Supervised latent factor modeling isolates cell-type-specific transcriptomic modules that underlie Alzheimer’s disease progression</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Late onset Alzheimer’s disease (AD) is a progressive neurodegenerative disease, with brain changes beginning years before symptoms surface. AD is characterized by neuronal loss, the classic feature of the disease that underlies brain atrophy. However, GWAS reports and recent single-nucleus RNA sequencing (snRNA-seq) efforts have highlighted that glial cells, particularly microglia, claim a central role in AD pathophysiology. Here, we tailor pattern-learning algorithms to explore distinct gene programs by integrating the entire transcriptome, yielding distributed AD-predictive modules within the brain’s major cell-types. We show that these learned modules are biologically meaningful through the identification of new and relevant enriched signaling cascades. The predictive nature of our modules, especially in microglia, allows us to infer each subject’s progression along a disease pseudo-trajectory, confirmed by post-mortem pathological brain tissue markers. Additionally, we quantify the interplay between pairs of cell-type modules in the AD brain, and localized known AD risk genes to enriched module gene programs. Our collective findings advocate for a transition from cell-type-specificity to gene modules specificity to unlock the potential of unique gene programs, recasting the roles of recently reported genome-wide AD risk loci. Designing a supervised latent factor framework for snRNA-seq human brain, the authors find distinct Alzheimer’s-predictive gene modules across celltypes, suggesting subcelltype disease progression trajectories.</description><subject>38/39</subject><subject>38/43</subject><subject>38/62</subject><subject>631/114/2397</subject><subject>631/208/199</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Artificial intelligence</subject><subject>Atrophy</subject><subject>Biomedical and Life Sciences</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Computer science</subject><subject>Disease</subject><subject>Disease Progression</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Regulatory Networks</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Glial cells</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Microglia</subject><subject>Microglia - metabolism</subject><subject>Microglia - pathology</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Pathophysiology</subject><subject>snRNA</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Ustu1TAQjRCIVqU_wAJZYsMm4Pd1VqiqeFSqxAJYW449yfVVEgfbqdSuWPAT_B5fgu9NKS0LVh7PnDkzZ3Sq6jnBrwlm6k3iFGNWY8prLOmG1epRdUxZ09RMcvr4XnxUnaa0wxiTpmkk40-rI6Y2EnPFjqsfn5cZ4pVP4NBgMkwZdcbmENEYHAx-6pFPYV9JyMIw1Pl6hjrNYH3nLcrRTMlGP-cwlm_pWYaCzFuT0TI5iIMHdDbcbMGPEH99_5mQK7NMAjTH0EdIyYfpWfWkM0OC09v3pPr6_t2X84_15acPF-dnl7XlDc21E5ZS6QThDgRnbQmFhaKlAYuFAtJRSUjbyq6Ia4QjnFNnWNdZKtvOcHZSXay8LpidnqMfTbzWwXh9SITYaxOztwPojVNWiVYwzB3vgBqlAFxrWmsosZQUrrcr17y0IzhbLhfN8ID0YWXyW92HK00IwYRLVhhe3TLE8G2BlPXo0_7GZoKwJM2wkFI2SuwXf_kPdBeWOJVbHVB4U-TLgqIrysaQUoTubhuC9d40ejWNLqbRB9NoVZpe3Ndx1_LHIgXAVkAqpamH-Hf2f2h_A77V0kI</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Hodgson, Liam</creator><creator>Li, Yue</creator><creator>Iturria-Medina, Yasser</creator><creator>Stratton, Jo Anne</creator><creator>Wolf, Guy</creator><creator>Krishnaswamy, Smita</creator><creator>Bennett, David A.</creator><creator>Bzdok, Danilo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5823-1985</orcidid><orcidid>https://orcid.org/0009-0001-8462-9863</orcidid><orcidid>https://orcid.org/0000-0003-3844-4865</orcidid><orcidid>https://orcid.org/0000-0002-9345-0347</orcidid><orcidid>https://orcid.org/0000-0003-3466-6620</orcidid></search><sort><creationdate>20240517</creationdate><title>Supervised latent factor modeling isolates cell-type-specific transcriptomic modules that underlie Alzheimer’s disease progression</title><author>Hodgson, Liam ; Li, Yue ; Iturria-Medina, Yasser ; Stratton, Jo Anne ; Wolf, Guy ; Krishnaswamy, Smita ; Bennett, David A. ; Bzdok, Danilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-d5c226d514de543b6d55ce3879ec058e1f2611bb6f60495d1442da3ffc26bfa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/39</topic><topic>38/43</topic><topic>38/62</topic><topic>631/114/2397</topic><topic>631/208/199</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Artificial intelligence</topic><topic>Atrophy</topic><topic>Biomedical and Life Sciences</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Computer science</topic><topic>Disease</topic><topic>Disease Progression</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Regulatory Networks</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Glial cells</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Microglia</topic><topic>Microglia - metabolism</topic><topic>Microglia - pathology</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Pathophysiology</topic><topic>snRNA</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodgson, Liam</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Iturria-Medina, Yasser</creatorcontrib><creatorcontrib>Stratton, Jo Anne</creatorcontrib><creatorcontrib>Wolf, Guy</creatorcontrib><creatorcontrib>Krishnaswamy, Smita</creatorcontrib><creatorcontrib>Bennett, David A.</creatorcontrib><creatorcontrib>Bzdok, Danilo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodgson, Liam</au><au>Li, Yue</au><au>Iturria-Medina, Yasser</au><au>Stratton, Jo Anne</au><au>Wolf, Guy</au><au>Krishnaswamy, Smita</au><au>Bennett, David A.</au><au>Bzdok, Danilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised latent factor modeling isolates cell-type-specific transcriptomic modules that underlie Alzheimer’s disease progression</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2024-05-17</date><risdate>2024</risdate><volume>7</volume><issue>1</issue><spage>591</spage><epage>19</epage><pages>591-19</pages><artnum>591</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Late onset Alzheimer’s disease (AD) is a progressive neurodegenerative disease, with brain changes beginning years before symptoms surface. AD is characterized by neuronal loss, the classic feature of the disease that underlies brain atrophy. However, GWAS reports and recent single-nucleus RNA sequencing (snRNA-seq) efforts have highlighted that glial cells, particularly microglia, claim a central role in AD pathophysiology. Here, we tailor pattern-learning algorithms to explore distinct gene programs by integrating the entire transcriptome, yielding distributed AD-predictive modules within the brain’s major cell-types. We show that these learned modules are biologically meaningful through the identification of new and relevant enriched signaling cascades. The predictive nature of our modules, especially in microglia, allows us to infer each subject’s progression along a disease pseudo-trajectory, confirmed by post-mortem pathological brain tissue markers. Additionally, we quantify the interplay between pairs of cell-type modules in the AD brain, and localized known AD risk genes to enriched module gene programs. Our collective findings advocate for a transition from cell-type-specificity to gene modules specificity to unlock the potential of unique gene programs, recasting the roles of recently reported genome-wide AD risk loci. Designing a supervised latent factor framework for snRNA-seq human brain, the authors find distinct Alzheimer’s-predictive gene modules across celltypes, suggesting subcelltype disease progression trajectories.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38760483</pmid><doi>10.1038/s42003-024-06273-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5823-1985</orcidid><orcidid>https://orcid.org/0009-0001-8462-9863</orcidid><orcidid>https://orcid.org/0000-0003-3844-4865</orcidid><orcidid>https://orcid.org/0000-0002-9345-0347</orcidid><orcidid>https://orcid.org/0000-0003-3466-6620</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2024-05, Vol.7 (1), p.591-19, Article 591
issn 2399-3642
2399-3642
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7d8c85b5304d4fe2a88eedbabca21c21
source Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 38/39
38/43
38/62
631/114/2397
631/208/199
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer's disease
Artificial intelligence
Atrophy
Biomedical and Life Sciences
Brain
Brain - metabolism
Brain - pathology
Computer science
Disease
Disease Progression
Gene expression
Gene Expression Profiling
Gene Regulatory Networks
Genomes
Genotype & phenotype
Glial cells
Humans
Life Sciences
Machine learning
Medical imaging
Medicine
Microglia
Microglia - metabolism
Microglia - pathology
Neurodegenerative diseases
Neuroimaging
Pathophysiology
snRNA
Transcriptome
Transcriptomes
Transcriptomics
title Supervised latent factor modeling isolates cell-type-specific transcriptomic modules that underlie Alzheimer’s disease progression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20latent%20factor%20modeling%20isolates%20cell-type-specific%20transcriptomic%20modules%20that%20underlie%20Alzheimer%E2%80%99s%20disease%20progression&rft.jtitle=Communications%20biology&rft.au=Hodgson,%20Liam&rft.date=2024-05-17&rft.volume=7&rft.issue=1&rft.spage=591&rft.epage=19&rft.pages=591-19&rft.artnum=591&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-024-06273-8&rft_dat=%3Cproquest_doaj_%3E3056669854%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-d5c226d514de543b6d55ce3879ec058e1f2611bb6f60495d1442da3ffc26bfa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3056070586&rft_id=info:pmid/38760483&rfr_iscdi=true