Loading…

Matriptase-2 deficiency protects from obesity by modulating iron homeostasis

Alterations in iron status have frequently been associated with obesity and other metabolic disorders. The hormone hepcidin stands out as a key regulator in the maintenance of iron homeostasis by controlling the main iron exporter, ferroportin. Here we demonstrate that the deficiency in the hepcidin...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-04, Vol.9 (1), p.1350-12, Article 1350
Main Authors: Folgueras, Alicia R., Freitas-Rodríguez, Sandra, Ramsay, Andrew J., Garabaya, Cecilia, Rodríguez, Francisco, Velasco, Gloria, López-Otín, Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-ab8678e12938708388634e7706c913a4ca84550393f3de3617031eb88c61a4913
cites cdi_FETCH-LOGICAL-c606t-ab8678e12938708388634e7706c913a4ca84550393f3de3617031eb88c61a4913
container_end_page 12
container_issue 1
container_start_page 1350
container_title Nature communications
container_volume 9
creator Folgueras, Alicia R.
Freitas-Rodríguez, Sandra
Ramsay, Andrew J.
Garabaya, Cecilia
Rodríguez, Francisco
Velasco, Gloria
López-Otín, Carlos
description Alterations in iron status have frequently been associated with obesity and other metabolic disorders. The hormone hepcidin stands out as a key regulator in the maintenance of iron homeostasis by controlling the main iron exporter, ferroportin. Here we demonstrate that the deficiency in the hepcidin repressor matriptase-2 (Tmprss6) protects from high-fat diet-induced obesity. Tmprss6 −/− mice show a significant decrease in body fat, improved glucose tolerance and insulin sensitivity, and are protected against hepatic steatosis. Moreover, these mice exhibit a significant increase in fat lipolysis, consistent with their dramatic reduction in adiposity. Rescue experiments that block hepcidin up-regulation and restore iron levels in Tmprss6 −/ − mice via anti-hemojuvelin (HJV) therapy, revert the obesity-resistant phenotype of Tmprss6 −/ − mice. Overall, this study describes a role for matritpase-2 and hepcidin in obesity and highlights the relevance of iron regulation in the control of adipose tissue function. Iron homeostasis dysfunctions have been associated with several metabolic disorders including obesity, steatosis and diabetes. Here the authors demonstrate that the hepcidin repressor matriptase-2 regulates adiposity and its deficiency protects mice against obesity and promotes lipolysis.
doi_str_mv 10.1038/s41467-018-03853-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7d9380d8e26744d9bacd18d51dfcfc31</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7d9380d8e26744d9bacd18d51dfcfc31</doaj_id><sourcerecordid>2024015935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-ab8678e12938708388634e7706c913a4ca84550393f3de3617031eb88c61a4913</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi0EotXQP8ACRWLDJsVvOxskVPGoNIgNrC3Hvpl6lMSD7SDNv8fTlD5Y4I1fx-fa_hB6TfAlwUy_z5xwqVpMdFungrXkGTqnmJOWKMqePxqfoYuc97g21hHN-Ut0RjvJpMDdOdp-syWFQ7EZWtp4GIILMLtjc0ixgCu5GVKcmthDDuXY9Mdmin4ZbQnzrgkpzs1NnCDmKgj5FXox2DHDxV2_QT8_f_px9bXdfv9yffVx2zqJZWltr6XSQGjHtMKaaS0ZB6WwdB1hljuruRD1tmxgHpgkCjMCvdZOEssrskHXq9dHuzeHFCabjibaYG4XYtoZm0pwIxjlaxHsNVCpOPddb50n2gviBzc4dnJ9WF2HpZ_AO5hLsuMT6dOdOdyYXfxthO6YEKIK3t0JUvy1QC5mCtnBONoZ4pINxZRjIipc0bf_oPu4pLl-1YliiihV89ogulIuxZwTDPeXIdicsjdr9qZmb26zN6dnvHn8jPsjf5OuAFuBXLfmHaSH2v_R_gFQEbja</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023717772</pqid></control><display><type>article</type><title>Matriptase-2 deficiency protects from obesity by modulating iron homeostasis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><source>North East Research Libraries Nature Academic Titles</source><creator>Folgueras, Alicia R. ; Freitas-Rodríguez, Sandra ; Ramsay, Andrew J. ; Garabaya, Cecilia ; Rodríguez, Francisco ; Velasco, Gloria ; López-Otín, Carlos</creator><creatorcontrib>Folgueras, Alicia R. ; Freitas-Rodríguez, Sandra ; Ramsay, Andrew J. ; Garabaya, Cecilia ; Rodríguez, Francisco ; Velasco, Gloria ; López-Otín, Carlos</creatorcontrib><description>Alterations in iron status have frequently been associated with obesity and other metabolic disorders. The hormone hepcidin stands out as a key regulator in the maintenance of iron homeostasis by controlling the main iron exporter, ferroportin. Here we demonstrate that the deficiency in the hepcidin repressor matriptase-2 (Tmprss6) protects from high-fat diet-induced obesity. Tmprss6 −/− mice show a significant decrease in body fat, improved glucose tolerance and insulin sensitivity, and are protected against hepatic steatosis. Moreover, these mice exhibit a significant increase in fat lipolysis, consistent with their dramatic reduction in adiposity. Rescue experiments that block hepcidin up-regulation and restore iron levels in Tmprss6 −/ − mice via anti-hemojuvelin (HJV) therapy, revert the obesity-resistant phenotype of Tmprss6 −/ − mice. Overall, this study describes a role for matritpase-2 and hepcidin in obesity and highlights the relevance of iron regulation in the control of adipose tissue function. Iron homeostasis dysfunctions have been associated with several metabolic disorders including obesity, steatosis and diabetes. Here the authors demonstrate that the hepcidin repressor matriptase-2 regulates adiposity and its deficiency protects mice against obesity and promotes lipolysis.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-03853-1</identifier><identifier>PMID: 29636509</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 45/77 ; 45/90 ; 631/443/319/2723 ; 64/60 ; 692/163/2743/2037 ; 82/29 ; Adipose tissue ; Body fat ; Control ; Fatty liver ; Glucose tolerance ; Hepcidin ; High fat diet ; Homeostasis ; Humanities and Social Sciences ; Insulin ; Iron ; Lipolysis ; Metabolic disorders ; Mice ; multidisciplinary ; Obesity ; Phenotypes ; Rodents ; Science ; Science (multidisciplinary) ; Steatosis</subject><ispartof>Nature communications, 2018-04, Vol.9 (1), p.1350-12, Article 1350</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-ab8678e12938708388634e7706c913a4ca84550393f3de3617031eb88c61a4913</citedby><cites>FETCH-LOGICAL-c606t-ab8678e12938708388634e7706c913a4ca84550393f3de3617031eb88c61a4913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2023717772/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2023717772?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29636509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Folgueras, Alicia R.</creatorcontrib><creatorcontrib>Freitas-Rodríguez, Sandra</creatorcontrib><creatorcontrib>Ramsay, Andrew J.</creatorcontrib><creatorcontrib>Garabaya, Cecilia</creatorcontrib><creatorcontrib>Rodríguez, Francisco</creatorcontrib><creatorcontrib>Velasco, Gloria</creatorcontrib><creatorcontrib>López-Otín, Carlos</creatorcontrib><title>Matriptase-2 deficiency protects from obesity by modulating iron homeostasis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Alterations in iron status have frequently been associated with obesity and other metabolic disorders. The hormone hepcidin stands out as a key regulator in the maintenance of iron homeostasis by controlling the main iron exporter, ferroportin. Here we demonstrate that the deficiency in the hepcidin repressor matriptase-2 (Tmprss6) protects from high-fat diet-induced obesity. Tmprss6 −/− mice show a significant decrease in body fat, improved glucose tolerance and insulin sensitivity, and are protected against hepatic steatosis. Moreover, these mice exhibit a significant increase in fat lipolysis, consistent with their dramatic reduction in adiposity. Rescue experiments that block hepcidin up-regulation and restore iron levels in Tmprss6 −/ − mice via anti-hemojuvelin (HJV) therapy, revert the obesity-resistant phenotype of Tmprss6 −/ − mice. Overall, this study describes a role for matritpase-2 and hepcidin in obesity and highlights the relevance of iron regulation in the control of adipose tissue function. Iron homeostasis dysfunctions have been associated with several metabolic disorders including obesity, steatosis and diabetes. Here the authors demonstrate that the hepcidin repressor matriptase-2 regulates adiposity and its deficiency protects mice against obesity and promotes lipolysis.</description><subject>13/1</subject><subject>45/77</subject><subject>45/90</subject><subject>631/443/319/2723</subject><subject>64/60</subject><subject>692/163/2743/2037</subject><subject>82/29</subject><subject>Adipose tissue</subject><subject>Body fat</subject><subject>Control</subject><subject>Fatty liver</subject><subject>Glucose tolerance</subject><subject>Hepcidin</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Insulin</subject><subject>Iron</subject><subject>Lipolysis</subject><subject>Metabolic disorders</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Obesity</subject><subject>Phenotypes</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Steatosis</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAURi0EotXQP8ACRWLDJsVvOxskVPGoNIgNrC3Hvpl6lMSD7SDNv8fTlD5Y4I1fx-fa_hB6TfAlwUy_z5xwqVpMdFungrXkGTqnmJOWKMqePxqfoYuc97g21hHN-Ut0RjvJpMDdOdp-syWFQ7EZWtp4GIILMLtjc0ixgCu5GVKcmthDDuXY9Mdmin4ZbQnzrgkpzs1NnCDmKgj5FXox2DHDxV2_QT8_f_px9bXdfv9yffVx2zqJZWltr6XSQGjHtMKaaS0ZB6WwdB1hljuruRD1tmxgHpgkCjMCvdZOEssrskHXq9dHuzeHFCabjibaYG4XYtoZm0pwIxjlaxHsNVCpOPddb50n2gviBzc4dnJ9WF2HpZ_AO5hLsuMT6dOdOdyYXfxthO6YEKIK3t0JUvy1QC5mCtnBONoZ4pINxZRjIipc0bf_oPu4pLl-1YliiihV89ogulIuxZwTDPeXIdicsjdr9qZmb26zN6dnvHn8jPsjf5OuAFuBXLfmHaSH2v_R_gFQEbja</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Folgueras, Alicia R.</creator><creator>Freitas-Rodríguez, Sandra</creator><creator>Ramsay, Andrew J.</creator><creator>Garabaya, Cecilia</creator><creator>Rodríguez, Francisco</creator><creator>Velasco, Gloria</creator><creator>López-Otín, Carlos</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180410</creationdate><title>Matriptase-2 deficiency protects from obesity by modulating iron homeostasis</title><author>Folgueras, Alicia R. ; Freitas-Rodríguez, Sandra ; Ramsay, Andrew J. ; Garabaya, Cecilia ; Rodríguez, Francisco ; Velasco, Gloria ; López-Otín, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-ab8678e12938708388634e7706c913a4ca84550393f3de3617031eb88c61a4913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>45/77</topic><topic>45/90</topic><topic>631/443/319/2723</topic><topic>64/60</topic><topic>692/163/2743/2037</topic><topic>82/29</topic><topic>Adipose tissue</topic><topic>Body fat</topic><topic>Control</topic><topic>Fatty liver</topic><topic>Glucose tolerance</topic><topic>Hepcidin</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Insulin</topic><topic>Iron</topic><topic>Lipolysis</topic><topic>Metabolic disorders</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Obesity</topic><topic>Phenotypes</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Steatosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Folgueras, Alicia R.</creatorcontrib><creatorcontrib>Freitas-Rodríguez, Sandra</creatorcontrib><creatorcontrib>Ramsay, Andrew J.</creatorcontrib><creatorcontrib>Garabaya, Cecilia</creatorcontrib><creatorcontrib>Rodríguez, Francisco</creatorcontrib><creatorcontrib>Velasco, Gloria</creatorcontrib><creatorcontrib>López-Otín, Carlos</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Folgueras, Alicia R.</au><au>Freitas-Rodríguez, Sandra</au><au>Ramsay, Andrew J.</au><au>Garabaya, Cecilia</au><au>Rodríguez, Francisco</au><au>Velasco, Gloria</au><au>López-Otín, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matriptase-2 deficiency protects from obesity by modulating iron homeostasis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>1350</spage><epage>12</epage><pages>1350-12</pages><artnum>1350</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Alterations in iron status have frequently been associated with obesity and other metabolic disorders. The hormone hepcidin stands out as a key regulator in the maintenance of iron homeostasis by controlling the main iron exporter, ferroportin. Here we demonstrate that the deficiency in the hepcidin repressor matriptase-2 (Tmprss6) protects from high-fat diet-induced obesity. Tmprss6 −/− mice show a significant decrease in body fat, improved glucose tolerance and insulin sensitivity, and are protected against hepatic steatosis. Moreover, these mice exhibit a significant increase in fat lipolysis, consistent with their dramatic reduction in adiposity. Rescue experiments that block hepcidin up-regulation and restore iron levels in Tmprss6 −/ − mice via anti-hemojuvelin (HJV) therapy, revert the obesity-resistant phenotype of Tmprss6 −/ − mice. Overall, this study describes a role for matritpase-2 and hepcidin in obesity and highlights the relevance of iron regulation in the control of adipose tissue function. Iron homeostasis dysfunctions have been associated with several metabolic disorders including obesity, steatosis and diabetes. Here the authors demonstrate that the hepcidin repressor matriptase-2 regulates adiposity and its deficiency protects mice against obesity and promotes lipolysis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29636509</pmid><doi>10.1038/s41467-018-03853-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2018-04, Vol.9 (1), p.1350-12, Article 1350
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7d9380d8e26744d9bacd18d51dfcfc31
source Open Access: PubMed Central; Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access; North East Research Libraries Nature Academic Titles
subjects 13/1
45/77
45/90
631/443/319/2723
64/60
692/163/2743/2037
82/29
Adipose tissue
Body fat
Control
Fatty liver
Glucose tolerance
Hepcidin
High fat diet
Homeostasis
Humanities and Social Sciences
Insulin
Iron
Lipolysis
Metabolic disorders
Mice
multidisciplinary
Obesity
Phenotypes
Rodents
Science
Science (multidisciplinary)
Steatosis
title Matriptase-2 deficiency protects from obesity by modulating iron homeostasis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matriptase-2%20deficiency%20protects%20from%20obesity%20by%20modulating%20iron%20homeostasis&rft.jtitle=Nature%20communications&rft.au=Folgueras,%20Alicia%20R.&rft.date=2018-04-10&rft.volume=9&rft.issue=1&rft.spage=1350&rft.epage=12&rft.pages=1350-12&rft.artnum=1350&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-03853-1&rft_dat=%3Cproquest_doaj_%3E2024015935%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-ab8678e12938708388634e7706c913a4ca84550393f3de3617031eb88c61a4913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2023717772&rft_id=info:pmid/29636509&rfr_iscdi=true