Loading…
Optical second harmonic generation in anisotropic multilayers with complete multireflection of linear and nonlinear waves using ♯SHAARP.ml package
Optical second harmonic generation (SHG) is a nonlinear optical effect widely used for nonlinear optical microscopy and laser frequency conversion. Closed-form analytical solution of the nonlinear optical responses is essential for evaluating materials whose optical properties are unknown a priori....
Saved in:
Published in: | npj computational materials 2024-03, Vol.10 (1), p.64-15, Article 64 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-de9ed359566eb72110a9aec3bab588b26bedffe99a0a55a4d63723289d0ef9073 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 64 |
container_title | npj computational materials |
container_volume | 10 |
creator | Zu, Rui Wang, Bo He, Jingyang Weber, Lincoln Saha, Akash Chen, Long-Qing Gopalan, Venkatraman |
description | Optical second harmonic generation (SHG) is a nonlinear optical effect widely used for nonlinear optical microscopy and laser frequency conversion. Closed-form analytical solution of the nonlinear optical responses is essential for evaluating materials whose optical properties are unknown a priori. A recent open-source code, ♯SHAARP.
si
, can provide such closed form solutions for crystals with arbitrary symmetries, orientations, and anisotropic properties at a
single
interface. However, optical components are often in the form of slabs, thin films on substrates, and multilayer heterostructures with multiple reflections of both the fundamental and up to ten different SHG waves at each interface, adding significant complexity. Many approximations have therefore been employed in the existing analytical approaches, such as slowly varying approximation, weak reflection of the nonlinear polarization, transparent medium, high crystallographic symmetry, Kleinman symmetry, easy crystal orientation along a high-symmetry direction, phase matching conditions and negligible interference among nonlinear waves, which may lead to large errors in the reported material properties. To avoid these approximations, we have developed an open-source package named Second Harmonic Analysis of Anisotropic Rotational Polarimetry in Multilayers (♯SHAARP.
ml
). The reliability and accuracy are established by experimentally benchmarking with both the SHG polarimetry and Maker fringes using standard and commonly used nonlinear optical materials as well as twisted 2-dimensional heterostructures. |
doi_str_mv | 10.1038/s41524-024-01229-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7d95919fc34c4d4c8779a4e24673b459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7d95919fc34c4d4c8779a4e24673b459</doaj_id><sourcerecordid>3015014321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-de9ed359566eb72110a9aec3bab588b26bedffe99a0a55a4d63723289d0ef9073</originalsourceid><addsrcrecordid>eNp9Uctu1DAUjRBIVNP-ACsL1il-5eHlqAJaqVIRj7V149xkPGTsYHuo-h_d8BX8E19Sp6mAFYsr-_qec2yfUxSvGD1nVLRvo2QVlyVdinGuSv6sOOG0akqhavr8n_3L4izGPaWUKd5ySU-K-5s5WQMTiWi868kOwsE7a8iIDgMk6x2xjoCz0afg5zw5HKdkJ7jDEMmtTTti_GGeMOE6CThMaB6JfiCTdQgh83vivHvqbuEHRnKM1o3k989fny-3208fzw8TmcF8gxFPixcDTBHPntZN8fX9uy8Xl-X1zYeri-11aSRtUtmjwl5Uqqpr7BrOGAUFaEQHXdW2Ha877IcBlQIKVQWyr0XDBW9VT3FQtBGb4mrV7T3s9RzsAcKd9mD144EPo4aQ7ZlQN72qFFODEdLIXpq2aRRI5LJuRCcrlbVer1o-JqujsQnNLlvqsheaC8FEwzLozQqag_9-xJj03h-Dy3_UgrKKMin4guIrygQfY_bzz9MY1Uviek1c06WWxPMFm0KspJjBbsTwV_o_rAcyCrEc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015014321</pqid></control><display><type>article</type><title>Optical second harmonic generation in anisotropic multilayers with complete multireflection of linear and nonlinear waves using ♯SHAARP.ml package</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zu, Rui ; Wang, Bo ; He, Jingyang ; Weber, Lincoln ; Saha, Akash ; Chen, Long-Qing ; Gopalan, Venkatraman</creator><creatorcontrib>Zu, Rui ; Wang, Bo ; He, Jingyang ; Weber, Lincoln ; Saha, Akash ; Chen, Long-Qing ; Gopalan, Venkatraman ; Energy Frontier Research Centers (EFRC) (United States). 3D Ferroelectric Microelectronics (3DFeM) ; Pennsylvania State Univ., University Park, PA (United States) ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Optical second harmonic generation (SHG) is a nonlinear optical effect widely used for nonlinear optical microscopy and laser frequency conversion. Closed-form analytical solution of the nonlinear optical responses is essential for evaluating materials whose optical properties are unknown a priori. A recent open-source code, ♯SHAARP.
si
, can provide such closed form solutions for crystals with arbitrary symmetries, orientations, and anisotropic properties at a
single
interface. However, optical components are often in the form of slabs, thin films on substrates, and multilayer heterostructures with multiple reflections of both the fundamental and up to ten different SHG waves at each interface, adding significant complexity. Many approximations have therefore been employed in the existing analytical approaches, such as slowly varying approximation, weak reflection of the nonlinear polarization, transparent medium, high crystallographic symmetry, Kleinman symmetry, easy crystal orientation along a high-symmetry direction, phase matching conditions and negligible interference among nonlinear waves, which may lead to large errors in the reported material properties. To avoid these approximations, we have developed an open-source package named Second Harmonic Analysis of Anisotropic Rotational Polarimetry in Multilayers (♯SHAARP.
ml
). The reliability and accuracy are established by experimentally benchmarking with both the SHG polarimetry and Maker fringes using standard and commonly used nonlinear optical materials as well as twisted 2-dimensional heterostructures.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-024-01229-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/996 ; 639/624/400/385 ; 639/766/400/385 ; Anisotropy ; Approximation ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Closed form solutions ; Computational Intelligence ; Crystal structure ; Crystallography ; Crystals ; Exact solutions ; ferroelectrics and multiferroics ; Fourier analysis ; Harmonic analysis ; Heterostructures ; Light microscopy ; Material properties ; MATERIALS SCIENCE ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Multilayers ; Nonlinear optics ; Optical components ; Optical materials ; Optical microscopy ; Optical properties ; Optics ; Phase matching ; Polarimetry ; Second harmonic generation ; Source code ; Substrates ; Symmetry ; Theoretical ; Thin films</subject><ispartof>npj computational materials, 2024-03, Vol.10 (1), p.64-15, Article 64</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c407t-de9ed359566eb72110a9aec3bab588b26bedffe99a0a55a4d63723289d0ef9073</cites><orcidid>0000-0002-9944-4757 ; 0009-0008-2008-3612 ; 0000-0001-6866-3677 ; 0000-0003-3146-5559 ; 0009000820083612 ; 0000000299444757 ; 0000000331465559 ; 0000000168663677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3015014321/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3015014321?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2331371$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zu, Rui</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>He, Jingyang</creatorcontrib><creatorcontrib>Weber, Lincoln</creatorcontrib><creatorcontrib>Saha, Akash</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Gopalan, Venkatraman</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). 3D Ferroelectric Microelectronics (3DFeM)</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Optical second harmonic generation in anisotropic multilayers with complete multireflection of linear and nonlinear waves using ♯SHAARP.ml package</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Optical second harmonic generation (SHG) is a nonlinear optical effect widely used for nonlinear optical microscopy and laser frequency conversion. Closed-form analytical solution of the nonlinear optical responses is essential for evaluating materials whose optical properties are unknown a priori. A recent open-source code, ♯SHAARP.
si
, can provide such closed form solutions for crystals with arbitrary symmetries, orientations, and anisotropic properties at a
single
interface. However, optical components are often in the form of slabs, thin films on substrates, and multilayer heterostructures with multiple reflections of both the fundamental and up to ten different SHG waves at each interface, adding significant complexity. Many approximations have therefore been employed in the existing analytical approaches, such as slowly varying approximation, weak reflection of the nonlinear polarization, transparent medium, high crystallographic symmetry, Kleinman symmetry, easy crystal orientation along a high-symmetry direction, phase matching conditions and negligible interference among nonlinear waves, which may lead to large errors in the reported material properties. To avoid these approximations, we have developed an open-source package named Second Harmonic Analysis of Anisotropic Rotational Polarimetry in Multilayers (♯SHAARP.
ml
). The reliability and accuracy are established by experimentally benchmarking with both the SHG polarimetry and Maker fringes using standard and commonly used nonlinear optical materials as well as twisted 2-dimensional heterostructures.</description><subject>639/301/119/996</subject><subject>639/624/400/385</subject><subject>639/766/400/385</subject><subject>Anisotropy</subject><subject>Approximation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Closed form solutions</subject><subject>Computational Intelligence</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Exact solutions</subject><subject>ferroelectrics and multiferroics</subject><subject>Fourier analysis</subject><subject>Harmonic analysis</subject><subject>Heterostructures</subject><subject>Light microscopy</subject><subject>Material properties</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Multilayers</subject><subject>Nonlinear optics</subject><subject>Optical components</subject><subject>Optical materials</subject><subject>Optical microscopy</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Phase matching</subject><subject>Polarimetry</subject><subject>Second harmonic generation</subject><subject>Source code</subject><subject>Substrates</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Thin films</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uctu1DAUjRBIVNP-ACsL1il-5eHlqAJaqVIRj7V149xkPGTsYHuo-h_d8BX8E19Sp6mAFYsr-_qec2yfUxSvGD1nVLRvo2QVlyVdinGuSv6sOOG0akqhavr8n_3L4izGPaWUKd5ySU-K-5s5WQMTiWi868kOwsE7a8iIDgMk6x2xjoCz0afg5zw5HKdkJ7jDEMmtTTti_GGeMOE6CThMaB6JfiCTdQgh83vivHvqbuEHRnKM1o3k989fny-3208fzw8TmcF8gxFPixcDTBHPntZN8fX9uy8Xl-X1zYeri-11aSRtUtmjwl5Uqqpr7BrOGAUFaEQHXdW2Ha877IcBlQIKVQWyr0XDBW9VT3FQtBGb4mrV7T3s9RzsAcKd9mD144EPo4aQ7ZlQN72qFFODEdLIXpq2aRRI5LJuRCcrlbVer1o-JqujsQnNLlvqsheaC8FEwzLozQqag_9-xJj03h-Dy3_UgrKKMin4guIrygQfY_bzz9MY1Uviek1c06WWxPMFm0KspJjBbsTwV_o_rAcyCrEc</recordid><startdate>20240329</startdate><enddate>20240329</enddate><creator>Zu, Rui</creator><creator>Wang, Bo</creator><creator>He, Jingyang</creator><creator>Weber, Lincoln</creator><creator>Saha, Akash</creator><creator>Chen, Long-Qing</creator><creator>Gopalan, Venkatraman</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9944-4757</orcidid><orcidid>https://orcid.org/0009-0008-2008-3612</orcidid><orcidid>https://orcid.org/0000-0001-6866-3677</orcidid><orcidid>https://orcid.org/0000-0003-3146-5559</orcidid><orcidid>https://orcid.org/0009000820083612</orcidid><orcidid>https://orcid.org/0000000299444757</orcidid><orcidid>https://orcid.org/0000000331465559</orcidid><orcidid>https://orcid.org/0000000168663677</orcidid></search><sort><creationdate>20240329</creationdate><title>Optical second harmonic generation in anisotropic multilayers with complete multireflection of linear and nonlinear waves using ♯SHAARP.ml package</title><author>Zu, Rui ; Wang, Bo ; He, Jingyang ; Weber, Lincoln ; Saha, Akash ; Chen, Long-Qing ; Gopalan, Venkatraman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-de9ed359566eb72110a9aec3bab588b26bedffe99a0a55a4d63723289d0ef9073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/119/996</topic><topic>639/624/400/385</topic><topic>639/766/400/385</topic><topic>Anisotropy</topic><topic>Approximation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Closed form solutions</topic><topic>Computational Intelligence</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Exact solutions</topic><topic>ferroelectrics and multiferroics</topic><topic>Fourier analysis</topic><topic>Harmonic analysis</topic><topic>Heterostructures</topic><topic>Light microscopy</topic><topic>Material properties</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Multilayers</topic><topic>Nonlinear optics</topic><topic>Optical components</topic><topic>Optical materials</topic><topic>Optical microscopy</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Phase matching</topic><topic>Polarimetry</topic><topic>Second harmonic generation</topic><topic>Source code</topic><topic>Substrates</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zu, Rui</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>He, Jingyang</creatorcontrib><creatorcontrib>Weber, Lincoln</creatorcontrib><creatorcontrib>Saha, Akash</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Gopalan, Venkatraman</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). 3D Ferroelectric Microelectronics (3DFeM)</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zu, Rui</au><au>Wang, Bo</au><au>He, Jingyang</au><au>Weber, Lincoln</au><au>Saha, Akash</au><au>Chen, Long-Qing</au><au>Gopalan, Venkatraman</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). 3D Ferroelectric Microelectronics (3DFeM)</aucorp><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical second harmonic generation in anisotropic multilayers with complete multireflection of linear and nonlinear waves using ♯SHAARP.ml package</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2024-03-29</date><risdate>2024</risdate><volume>10</volume><issue>1</issue><spage>64</spage><epage>15</epage><pages>64-15</pages><artnum>64</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Optical second harmonic generation (SHG) is a nonlinear optical effect widely used for nonlinear optical microscopy and laser frequency conversion. Closed-form analytical solution of the nonlinear optical responses is essential for evaluating materials whose optical properties are unknown a priori. A recent open-source code, ♯SHAARP.
si
, can provide such closed form solutions for crystals with arbitrary symmetries, orientations, and anisotropic properties at a
single
interface. However, optical components are often in the form of slabs, thin films on substrates, and multilayer heterostructures with multiple reflections of both the fundamental and up to ten different SHG waves at each interface, adding significant complexity. Many approximations have therefore been employed in the existing analytical approaches, such as slowly varying approximation, weak reflection of the nonlinear polarization, transparent medium, high crystallographic symmetry, Kleinman symmetry, easy crystal orientation along a high-symmetry direction, phase matching conditions and negligible interference among nonlinear waves, which may lead to large errors in the reported material properties. To avoid these approximations, we have developed an open-source package named Second Harmonic Analysis of Anisotropic Rotational Polarimetry in Multilayers (♯SHAARP.
ml
). The reliability and accuracy are established by experimentally benchmarking with both the SHG polarimetry and Maker fringes using standard and commonly used nonlinear optical materials as well as twisted 2-dimensional heterostructures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-024-01229-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9944-4757</orcidid><orcidid>https://orcid.org/0009-0008-2008-3612</orcidid><orcidid>https://orcid.org/0000-0001-6866-3677</orcidid><orcidid>https://orcid.org/0000-0003-3146-5559</orcidid><orcidid>https://orcid.org/0009000820083612</orcidid><orcidid>https://orcid.org/0000000299444757</orcidid><orcidid>https://orcid.org/0000000331465559</orcidid><orcidid>https://orcid.org/0000000168663677</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2024-03, Vol.10 (1), p.64-15, Article 64 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7d95919fc34c4d4c8779a4e24673b459 |
source | Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/119/996 639/624/400/385 639/766/400/385 Anisotropy Approximation Characterization and Evaluation of Materials Chemistry and Materials Science CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Closed form solutions Computational Intelligence Crystal structure Crystallography Crystals Exact solutions ferroelectrics and multiferroics Fourier analysis Harmonic analysis Heterostructures Light microscopy Material properties MATERIALS SCIENCE Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Multilayers Nonlinear optics Optical components Optical materials Optical microscopy Optical properties Optics Phase matching Polarimetry Second harmonic generation Source code Substrates Symmetry Theoretical Thin films |
title | Optical second harmonic generation in anisotropic multilayers with complete multireflection of linear and nonlinear waves using ♯SHAARP.ml package |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20second%20harmonic%20generation%20in%20anisotropic%20multilayers%20with%20complete%20multireflection%20of%20linear%20and%20nonlinear%20waves%20using%20%E2%99%AFSHAARP.ml%20package&rft.jtitle=npj%20computational%20materials&rft.au=Zu,%20Rui&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%203D%20Ferroelectric%20Microelectronics%20(3DFeM)&rft.date=2024-03-29&rft.volume=10&rft.issue=1&rft.spage=64&rft.epage=15&rft.pages=64-15&rft.artnum=64&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-024-01229-2&rft_dat=%3Cproquest_doaj_%3E3015014321%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-de9ed359566eb72110a9aec3bab588b26bedffe99a0a55a4d63723289d0ef9073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3015014321&rft_id=info:pmid/&rfr_iscdi=true |