Loading…

Infrared radiative switching with thermally and electrically tunable transition metal oxides-based plasmonic grating

Plasmonic and phase transition has been blended to gain the infrared radiative switching which is tunable with temperature or voltage supply. This is applied via vanadium dioxide, tungsten trioxide, and molybdenum trioxide as transition metal oxides (TMO). The metallic phase at high temperature or c...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-03, Vol.13 (1), p.3702-3702, Article 3702
Main Authors: Araki, Ken, Zhang, Richard Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plasmonic and phase transition has been blended to gain the infrared radiative switching which is tunable with temperature or voltage supply. This is applied via vanadium dioxide, tungsten trioxide, and molybdenum trioxide as transition metal oxides (TMO). The metallic phase at high temperature or colored state contributes in magnetic polariton (MP) excitation, producing broad absorptance. The TMO-based sub-layer is integrated underneath the grating fully supporting MP resonance. In contrast, this underlayer leads to producing the narrowband absorptance originated from concept of zero contrast grating (ZCG). The zero gradient in refractive index at the output plane of the grating cause transmission of light in broad wavelength range. With introduction of reflective silver underlayer, those transmitted through the grating are reflected back. However, there exists the near-zero narrowband transmission peaks in ZCG. This undergoes transformation to narrowband absorptance. In addition, another absorptance peak can be induced due to phonon modes at insulating phase. The MP resonance at metallic phase is characterized with inductor-capacitor (LC) circuit and the narrowband absorptance peaks are characterized with phase shift from the Fabry–Perot round trip (FP-RT) eigenequation from high contrast grating (HCG). The work expands the usage of transition metal oxides in infrared region with larger contrast.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-30959-4