Loading…
Lorentzian quantum gravity via Pachner moves: one-loop evaluation
A bstract Lorentzian quantum gravity is believed to cure the pathologies encountered in Euclidean quantum gravity, such as the conformal factor problem. We show that this is the case for the Lorentzian Regge path integral expanded around a flat background. We illustrate how a subset of local changes...
Saved in:
Published in: | The journal of high energy physics 2023-09, Vol.2023 (9), p.69-50, Article 69 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-a5d6bf91adc873adbe03b78cec5b33dfe7cf0966091a3e8469d3db40c9ae87d53 |
container_end_page | 50 |
container_issue | 9 |
container_start_page | 69 |
container_title | The journal of high energy physics |
container_volume | 2023 |
creator | Borissova, Johanna N. Dittrich, Bianca |
description | A
bstract
Lorentzian quantum gravity is believed to cure the pathologies encountered in Euclidean quantum gravity, such as the conformal factor problem. We show that this is the case for the Lorentzian Regge path integral expanded around a flat background. We illustrate how a subset of local changes of the triangulation, so-called Pachner moves, allow to isolate the indefinite nature of the gravitational action at the discrete level. The latter can be accounted for by oppositely chosen deformed contours of integration. Moreover, we construct a discretization-invariant local path integral measure for 3D Lorentzian Regge calculus and point out obstructions in defining such a measure in 4D. We see the work presented here as a first step towards establishing the existence of the non-perturbative Lorentzian path integral for Regge calculus and related frameworks such as spin foams.
An extensive appendix provides an overview of Lorentzian Regge calculus, using the recently established concept of the complexified Regge action, and derives useful geometric formulae and identities needed in the main text. |
doi_str_mv | 10.1007/JHEP09(2023)069 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7db4be4b79ac4650a8700933f3424dd7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7db4be4b79ac4650a8700933f3424dd7</doaj_id><sourcerecordid>2864008686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a5d6bf91adc873adbe03b78cec5b33dfe7cf0966091a3e8469d3db40c9ae87d53</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhiMEEqUws0ZigSH0Eif-YKuqQosq0QFm62I7JVUbt86HVH49LkHAwuST9T7vnZ4guI7hPgZgo-fZdAniNoGE3AEVJ8EghkREPGXi9M98HlzU9RogzmIBg2C8sM5UzUeJVbhvsWrabbhy2JXNIexKDJeo3ivjwq3tTP0Q2spEG2t3oelw02JT2uoyOCtwU5ur73cYvD1OXyezaPHyNJ-MF5EiLG4izDTNCxGjVpwR1LkBkjOujMpyQnRhmCpAUAo-QgxPqdBE5ykogYYznZFhMO97tcW13Llyi-4gLZby68O6lUTXlGpjJPNgbtKcCVQpzQA5AxCEFCRNUq2Z77rpu3bO7ltTN3JtW1f582XCaQrAKac-NepTytm6dqb42RqDPDqXvXN5dC69c09AT9Q-Wa2M--39D_kEHxyDrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864008686</pqid></control><display><type>article</type><title>Lorentzian quantum gravity via Pachner moves: one-loop evaluation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Borissova, Johanna N. ; Dittrich, Bianca</creator><creatorcontrib>Borissova, Johanna N. ; Dittrich, Bianca</creatorcontrib><description>A
bstract
Lorentzian quantum gravity is believed to cure the pathologies encountered in Euclidean quantum gravity, such as the conformal factor problem. We show that this is the case for the Lorentzian Regge path integral expanded around a flat background. We illustrate how a subset of local changes of the triangulation, so-called Pachner moves, allow to isolate the indefinite nature of the gravitational action at the discrete level. The latter can be accounted for by oppositely chosen deformed contours of integration. Moreover, we construct a discretization-invariant local path integral measure for 3D Lorentzian Regge calculus and point out obstructions in defining such a measure in 4D. We see the work presented here as a first step towards establishing the existence of the non-perturbative Lorentzian path integral for Regge calculus and related frameworks such as spin foams.
An extensive appendix provides an overview of Lorentzian Regge calculus, using the recently established concept of the complexified Regge action, and derives useful geometric formulae and identities needed in the main text.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP09(2023)069</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus ; Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Lattice Models of Gravity ; Models of Quantum Gravity ; Obstructions ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum gravity ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory ; Triangulation</subject><ispartof>The journal of high energy physics, 2023-09, Vol.2023 (9), p.69-50, Article 69</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-a5d6bf91adc873adbe03b78cec5b33dfe7cf0966091a3e8469d3db40c9ae87d53</cites><orcidid>0000-0001-7125-4372 ; 0000-0002-0072-5242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2864008686/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2864008686?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Borissova, Johanna N.</creatorcontrib><creatorcontrib>Dittrich, Bianca</creatorcontrib><title>Lorentzian quantum gravity via Pachner moves: one-loop evaluation</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
Lorentzian quantum gravity is believed to cure the pathologies encountered in Euclidean quantum gravity, such as the conformal factor problem. We show that this is the case for the Lorentzian Regge path integral expanded around a flat background. We illustrate how a subset of local changes of the triangulation, so-called Pachner moves, allow to isolate the indefinite nature of the gravitational action at the discrete level. The latter can be accounted for by oppositely chosen deformed contours of integration. Moreover, we construct a discretization-invariant local path integral measure for 3D Lorentzian Regge calculus and point out obstructions in defining such a measure in 4D. We see the work presented here as a first step towards establishing the existence of the non-perturbative Lorentzian path integral for Regge calculus and related frameworks such as spin foams.
An extensive appendix provides an overview of Lorentzian Regge calculus, using the recently established concept of the complexified Regge action, and derives useful geometric formulae and identities needed in the main text.</description><subject>Calculus</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Lattice Models of Gravity</subject><subject>Models of Quantum Gravity</subject><subject>Obstructions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum gravity</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Triangulation</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kD1PwzAQhiMEEqUws0ZigSH0Eif-YKuqQosq0QFm62I7JVUbt86HVH49LkHAwuST9T7vnZ4guI7hPgZgo-fZdAniNoGE3AEVJ8EghkREPGXi9M98HlzU9RogzmIBg2C8sM5UzUeJVbhvsWrabbhy2JXNIexKDJeo3ivjwq3tTP0Q2spEG2t3oelw02JT2uoyOCtwU5ur73cYvD1OXyezaPHyNJ-MF5EiLG4izDTNCxGjVpwR1LkBkjOujMpyQnRhmCpAUAo-QgxPqdBE5ykogYYznZFhMO97tcW13Llyi-4gLZby68O6lUTXlGpjJPNgbtKcCVQpzQA5AxCEFCRNUq2Z77rpu3bO7ltTN3JtW1f582XCaQrAKac-NepTytm6dqb42RqDPDqXvXN5dC69c09AT9Q-Wa2M--39D_kEHxyDrw</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Borissova, Johanna N.</creator><creator>Dittrich, Bianca</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7125-4372</orcidid><orcidid>https://orcid.org/0000-0002-0072-5242</orcidid></search><sort><creationdate>20230912</creationdate><title>Lorentzian quantum gravity via Pachner moves: one-loop evaluation</title><author>Borissova, Johanna N. ; Dittrich, Bianca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a5d6bf91adc873adbe03b78cec5b33dfe7cf0966091a3e8469d3db40c9ae87d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calculus</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Lattice Models of Gravity</topic><topic>Models of Quantum Gravity</topic><topic>Obstructions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum gravity</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borissova, Johanna N.</creatorcontrib><creatorcontrib>Dittrich, Bianca</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borissova, Johanna N.</au><au>Dittrich, Bianca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lorentzian quantum gravity via Pachner moves: one-loop evaluation</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2023-09-12</date><risdate>2023</risdate><volume>2023</volume><issue>9</issue><spage>69</spage><epage>50</epage><pages>69-50</pages><artnum>69</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
Lorentzian quantum gravity is believed to cure the pathologies encountered in Euclidean quantum gravity, such as the conformal factor problem. We show that this is the case for the Lorentzian Regge path integral expanded around a flat background. We illustrate how a subset of local changes of the triangulation, so-called Pachner moves, allow to isolate the indefinite nature of the gravitational action at the discrete level. The latter can be accounted for by oppositely chosen deformed contours of integration. Moreover, we construct a discretization-invariant local path integral measure for 3D Lorentzian Regge calculus and point out obstructions in defining such a measure in 4D. We see the work presented here as a first step towards establishing the existence of the non-perturbative Lorentzian path integral for Regge calculus and related frameworks such as spin foams.
An extensive appendix provides an overview of Lorentzian Regge calculus, using the recently established concept of the complexified Regge action, and derives useful geometric formulae and identities needed in the main text.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP09(2023)069</doi><tpages>50</tpages><orcidid>https://orcid.org/0000-0001-7125-4372</orcidid><orcidid>https://orcid.org/0000-0002-0072-5242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2023-09, Vol.2023 (9), p.69-50, Article 69 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7db4be4b79ac4650a8700933f3424dd7 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Calculus Classical and Quantum Gravitation Elementary Particles High energy physics Lattice Models of Gravity Models of Quantum Gravity Obstructions Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum gravity Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Triangulation |
title | Lorentzian quantum gravity via Pachner moves: one-loop evaluation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lorentzian%20quantum%20gravity%20via%20Pachner%20moves:%20one-loop%20evaluation&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Borissova,%20Johanna%20N.&rft.date=2023-09-12&rft.volume=2023&rft.issue=9&rft.spage=69&rft.epage=50&rft.pages=69-50&rft.artnum=69&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP09(2023)069&rft_dat=%3Cproquest_doaj_%3E2864008686%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-a5d6bf91adc873adbe03b78cec5b33dfe7cf0966091a3e8469d3db40c9ae87d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864008686&rft_id=info:pmid/&rfr_iscdi=true |