Loading…

Lorentzian quantum gravity via Pachner moves: one-loop evaluation

A bstract Lorentzian quantum gravity is believed to cure the pathologies encountered in Euclidean quantum gravity, such as the conformal factor problem. We show that this is the case for the Lorentzian Regge path integral expanded around a flat background. We illustrate how a subset of local changes...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2023-09, Vol.2023 (9), p.69-50, Article 69
Main Authors: Borissova, Johanna N., Dittrich, Bianca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c371t-a5d6bf91adc873adbe03b78cec5b33dfe7cf0966091a3e8469d3db40c9ae87d53
container_end_page 50
container_issue 9
container_start_page 69
container_title The journal of high energy physics
container_volume 2023
creator Borissova, Johanna N.
Dittrich, Bianca
description A bstract Lorentzian quantum gravity is believed to cure the pathologies encountered in Euclidean quantum gravity, such as the conformal factor problem. We show that this is the case for the Lorentzian Regge path integral expanded around a flat background. We illustrate how a subset of local changes of the triangulation, so-called Pachner moves, allow to isolate the indefinite nature of the gravitational action at the discrete level. The latter can be accounted for by oppositely chosen deformed contours of integration. Moreover, we construct a discretization-invariant local path integral measure for 3D Lorentzian Regge calculus and point out obstructions in defining such a measure in 4D. We see the work presented here as a first step towards establishing the existence of the non-perturbative Lorentzian path integral for Regge calculus and related frameworks such as spin foams. An extensive appendix provides an overview of Lorentzian Regge calculus, using the recently established concept of the complexified Regge action, and derives useful geometric formulae and identities needed in the main text.
doi_str_mv 10.1007/JHEP09(2023)069
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7db4be4b79ac4650a8700933f3424dd7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7db4be4b79ac4650a8700933f3424dd7</doaj_id><sourcerecordid>2864008686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a5d6bf91adc873adbe03b78cec5b33dfe7cf0966091a3e8469d3db40c9ae87d53</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhiMEEqUws0ZigSH0Eif-YKuqQosq0QFm62I7JVUbt86HVH49LkHAwuST9T7vnZ4guI7hPgZgo-fZdAniNoGE3AEVJ8EghkREPGXi9M98HlzU9RogzmIBg2C8sM5UzUeJVbhvsWrabbhy2JXNIexKDJeo3ivjwq3tTP0Q2spEG2t3oelw02JT2uoyOCtwU5ur73cYvD1OXyezaPHyNJ-MF5EiLG4izDTNCxGjVpwR1LkBkjOujMpyQnRhmCpAUAo-QgxPqdBE5ykogYYznZFhMO97tcW13Llyi-4gLZby68O6lUTXlGpjJPNgbtKcCVQpzQA5AxCEFCRNUq2Z77rpu3bO7ltTN3JtW1f582XCaQrAKac-NepTytm6dqb42RqDPDqXvXN5dC69c09AT9Q-Wa2M--39D_kEHxyDrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864008686</pqid></control><display><type>article</type><title>Lorentzian quantum gravity via Pachner moves: one-loop evaluation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Borissova, Johanna N. ; Dittrich, Bianca</creator><creatorcontrib>Borissova, Johanna N. ; Dittrich, Bianca</creatorcontrib><description>A bstract Lorentzian quantum gravity is believed to cure the pathologies encountered in Euclidean quantum gravity, such as the conformal factor problem. We show that this is the case for the Lorentzian Regge path integral expanded around a flat background. We illustrate how a subset of local changes of the triangulation, so-called Pachner moves, allow to isolate the indefinite nature of the gravitational action at the discrete level. The latter can be accounted for by oppositely chosen deformed contours of integration. Moreover, we construct a discretization-invariant local path integral measure for 3D Lorentzian Regge calculus and point out obstructions in defining such a measure in 4D. We see the work presented here as a first step towards establishing the existence of the non-perturbative Lorentzian path integral for Regge calculus and related frameworks such as spin foams. An extensive appendix provides an overview of Lorentzian Regge calculus, using the recently established concept of the complexified Regge action, and derives useful geometric formulae and identities needed in the main text.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP09(2023)069</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus ; Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Lattice Models of Gravity ; Models of Quantum Gravity ; Obstructions ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum gravity ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory ; Triangulation</subject><ispartof>The journal of high energy physics, 2023-09, Vol.2023 (9), p.69-50, Article 69</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-a5d6bf91adc873adbe03b78cec5b33dfe7cf0966091a3e8469d3db40c9ae87d53</cites><orcidid>0000-0001-7125-4372 ; 0000-0002-0072-5242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2864008686/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2864008686?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Borissova, Johanna N.</creatorcontrib><creatorcontrib>Dittrich, Bianca</creatorcontrib><title>Lorentzian quantum gravity via Pachner moves: one-loop evaluation</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract Lorentzian quantum gravity is believed to cure the pathologies encountered in Euclidean quantum gravity, such as the conformal factor problem. We show that this is the case for the Lorentzian Regge path integral expanded around a flat background. We illustrate how a subset of local changes of the triangulation, so-called Pachner moves, allow to isolate the indefinite nature of the gravitational action at the discrete level. The latter can be accounted for by oppositely chosen deformed contours of integration. Moreover, we construct a discretization-invariant local path integral measure for 3D Lorentzian Regge calculus and point out obstructions in defining such a measure in 4D. We see the work presented here as a first step towards establishing the existence of the non-perturbative Lorentzian path integral for Regge calculus and related frameworks such as spin foams. An extensive appendix provides an overview of Lorentzian Regge calculus, using the recently established concept of the complexified Regge action, and derives useful geometric formulae and identities needed in the main text.</description><subject>Calculus</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Lattice Models of Gravity</subject><subject>Models of Quantum Gravity</subject><subject>Obstructions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum gravity</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Triangulation</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kD1PwzAQhiMEEqUws0ZigSH0Eif-YKuqQosq0QFm62I7JVUbt86HVH49LkHAwuST9T7vnZ4guI7hPgZgo-fZdAniNoGE3AEVJ8EghkREPGXi9M98HlzU9RogzmIBg2C8sM5UzUeJVbhvsWrabbhy2JXNIexKDJeo3ivjwq3tTP0Q2spEG2t3oelw02JT2uoyOCtwU5ur73cYvD1OXyezaPHyNJ-MF5EiLG4izDTNCxGjVpwR1LkBkjOujMpyQnRhmCpAUAo-QgxPqdBE5ykogYYznZFhMO97tcW13Llyi-4gLZby68O6lUTXlGpjJPNgbtKcCVQpzQA5AxCEFCRNUq2Z77rpu3bO7ltTN3JtW1f582XCaQrAKac-NepTytm6dqb42RqDPDqXvXN5dC69c09AT9Q-Wa2M--39D_kEHxyDrw</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Borissova, Johanna N.</creator><creator>Dittrich, Bianca</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7125-4372</orcidid><orcidid>https://orcid.org/0000-0002-0072-5242</orcidid></search><sort><creationdate>20230912</creationdate><title>Lorentzian quantum gravity via Pachner moves: one-loop evaluation</title><author>Borissova, Johanna N. ; Dittrich, Bianca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a5d6bf91adc873adbe03b78cec5b33dfe7cf0966091a3e8469d3db40c9ae87d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calculus</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Lattice Models of Gravity</topic><topic>Models of Quantum Gravity</topic><topic>Obstructions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum gravity</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borissova, Johanna N.</creatorcontrib><creatorcontrib>Dittrich, Bianca</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borissova, Johanna N.</au><au>Dittrich, Bianca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lorentzian quantum gravity via Pachner moves: one-loop evaluation</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2023-09-12</date><risdate>2023</risdate><volume>2023</volume><issue>9</issue><spage>69</spage><epage>50</epage><pages>69-50</pages><artnum>69</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract Lorentzian quantum gravity is believed to cure the pathologies encountered in Euclidean quantum gravity, such as the conformal factor problem. We show that this is the case for the Lorentzian Regge path integral expanded around a flat background. We illustrate how a subset of local changes of the triangulation, so-called Pachner moves, allow to isolate the indefinite nature of the gravitational action at the discrete level. The latter can be accounted for by oppositely chosen deformed contours of integration. Moreover, we construct a discretization-invariant local path integral measure for 3D Lorentzian Regge calculus and point out obstructions in defining such a measure in 4D. We see the work presented here as a first step towards establishing the existence of the non-perturbative Lorentzian path integral for Regge calculus and related frameworks such as spin foams. An extensive appendix provides an overview of Lorentzian Regge calculus, using the recently established concept of the complexified Regge action, and derives useful geometric formulae and identities needed in the main text.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP09(2023)069</doi><tpages>50</tpages><orcidid>https://orcid.org/0000-0001-7125-4372</orcidid><orcidid>https://orcid.org/0000-0002-0072-5242</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2023-09, Vol.2023 (9), p.69-50, Article 69
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7db4be4b79ac4650a8700933f3424dd7
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
subjects Calculus
Classical and Quantum Gravitation
Elementary Particles
High energy physics
Lattice Models of Gravity
Models of Quantum Gravity
Obstructions
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum gravity
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Triangulation
title Lorentzian quantum gravity via Pachner moves: one-loop evaluation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lorentzian%20quantum%20gravity%20via%20Pachner%20moves:%20one-loop%20evaluation&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Borissova,%20Johanna%20N.&rft.date=2023-09-12&rft.volume=2023&rft.issue=9&rft.spage=69&rft.epage=50&rft.pages=69-50&rft.artnum=69&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP09(2023)069&rft_dat=%3Cproquest_doaj_%3E2864008686%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-a5d6bf91adc873adbe03b78cec5b33dfe7cf0966091a3e8469d3db40c9ae87d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864008686&rft_id=info:pmid/&rfr_iscdi=true