Loading…
Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications
The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal ene...
Saved in:
Published in: | Applied sciences 2021-12, Vol.11 (24), p.11609 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3 |
container_end_page | |
container_issue | 24 |
container_start_page | 11609 |
container_title | Applied sciences |
container_volume | 11 |
creator | Basavarajappa, Mahanthesh Lorenzini, Giulio Narasimhamurthy, Srikantha Albakri, Ashwag Muhammad, Taseer |
description | The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal energy into heat and electricity. However, improving the efficiency of solar thermal systems is the biggest challenge for researchers. Nanomaterial is an effective technique for improving the efficiency of STS’s by using nanomaterials as working fluids. Therefore, the present theoretical study aims to explore the thermal energy characteristics of the flow of nanomaterials generated by the surface gradient (Marangoni convection) on a disk surface subjected to two different thermal energy modulations. Instead of the conventional Fourier heat flux law to examine heat transfer characteristics, the Cattaneo–Christov heat flux (Fourier’s heat flux model) law is accounted for. The inhomogeneous nanomaterial model is used in mathematical modeling. The exponential form of thermal energy modulations is incorporated. The finite-difference technique along with Richardson extrapolation is used to treat the governing problem. The effects of the key parameters on flow distributions were analyzed in detail. Numerical calculations were performed to obtain correlations giving the reduced Nusselt number and the reduced Sherwood number in terms of relevant key parameters. The heat transfer rate of solar collectors increases due to the Marangoni convection. The thermophoresis phenomenon and chaotic movement of nanoparticles in a working fluid of solar collectors enhance the temperature distribution of the system. Furthermore, the thermal field is enhanced due to the thermal energy modulations. The results find applications in solar thermal exchanger manufacturing processes. |
doi_str_mv | 10.3390/app112411609 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7dd64c1b7853477ab766f42d0b9b8629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7dd64c1b7853477ab766f42d0b9b8629</doaj_id><sourcerecordid>2612740209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3</originalsourceid><addsrcrecordid>eNpNUctuE0EQXCGQEoXc8gEjccVkXjsPbpbBiaUEDjHnUe88kjHrmWVmHcgtvxHxd3wJ6xih9KVb1dVVre6mOSP4A2Man8MwEEI5IQLrV80xxVLMGCfy9Yv6qDmtdYOn0IQpgo-b35ceRrQukGrwBeWAvkDKWxh9idCjfD-BkNAqhZji6NGnWL-jn3G8Q9cwDd3mFNEip3tvx5jTRzRH19nFEL1Dy7wr0Zc_j08VPbss-92vfdv3KOSCbnIPBa3vfNlOTjcPdfRbNB-GPlrYi9W3zZsAffWn__JJ8235eb24nF19vVgt5lczy4QcZ4pbxikTGISw2mkrFVfESaZ8izV2UpGOdS1lGlqmvbI02A6TFhRWLLiOnTSrg67LsDFDiVsoDyZDNM9ALrcGyhht7410TnBLOqlaxqWETgoROHW4050SVE9a7w5aQ8k_dr6OZjOdIU3rGyoIlRxTvGe9P7BsybUWH_67Emz23zQvv8n-Aj1vkuE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612740209</pqid></control><display><type>article</type><title>Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications</title><source>Publicly Available Content Database</source><creator>Basavarajappa, Mahanthesh ; Lorenzini, Giulio ; Narasimhamurthy, Srikantha ; Albakri, Ashwag ; Muhammad, Taseer</creator><creatorcontrib>Basavarajappa, Mahanthesh ; Lorenzini, Giulio ; Narasimhamurthy, Srikantha ; Albakri, Ashwag ; Muhammad, Taseer</creatorcontrib><description>The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal energy into heat and electricity. However, improving the efficiency of solar thermal systems is the biggest challenge for researchers. Nanomaterial is an effective technique for improving the efficiency of STS’s by using nanomaterials as working fluids. Therefore, the present theoretical study aims to explore the thermal energy characteristics of the flow of nanomaterials generated by the surface gradient (Marangoni convection) on a disk surface subjected to two different thermal energy modulations. Instead of the conventional Fourier heat flux law to examine heat transfer characteristics, the Cattaneo–Christov heat flux (Fourier’s heat flux model) law is accounted for. The inhomogeneous nanomaterial model is used in mathematical modeling. The exponential form of thermal energy modulations is incorporated. The finite-difference technique along with Richardson extrapolation is used to treat the governing problem. The effects of the key parameters on flow distributions were analyzed in detail. Numerical calculations were performed to obtain correlations giving the reduced Nusselt number and the reduced Sherwood number in terms of relevant key parameters. The heat transfer rate of solar collectors increases due to the Marangoni convection. The thermophoresis phenomenon and chaotic movement of nanoparticles in a working fluid of solar collectors enhance the temperature distribution of the system. Furthermore, the thermal field is enhanced due to the thermal energy modulations. The results find applications in solar thermal exchanger manufacturing processes.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app112411609</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Alternative fuels ; Convection ; disk ; Finite difference method ; Fluctuations ; Fluid flow ; Fluids ; Heat exchangers ; Heat flux ; Heat transfer ; Magnetic fields ; Manufacturing industry ; Marangoni convection ; Mathematical models ; modified Fourier heat flux law ; nanofluid ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Oil recovery ; Solar collectors ; Solar energy ; Solar heating ; solar thermal exchangers ; System effectiveness ; Temperature distribution ; Thermal energy ; thermal energy modulations ; Thermophoresis ; Working fluids</subject><ispartof>Applied sciences, 2021-12, Vol.11 (24), p.11609</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3</citedby><cites>FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3</cites><orcidid>0000-0003-2481-3842 ; 0000-0001-5176-2898 ; 0000-0002-5676-8575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612740209/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612740209?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Basavarajappa, Mahanthesh</creatorcontrib><creatorcontrib>Lorenzini, Giulio</creatorcontrib><creatorcontrib>Narasimhamurthy, Srikantha</creatorcontrib><creatorcontrib>Albakri, Ashwag</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><title>Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications</title><title>Applied sciences</title><description>The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal energy into heat and electricity. However, improving the efficiency of solar thermal systems is the biggest challenge for researchers. Nanomaterial is an effective technique for improving the efficiency of STS’s by using nanomaterials as working fluids. Therefore, the present theoretical study aims to explore the thermal energy characteristics of the flow of nanomaterials generated by the surface gradient (Marangoni convection) on a disk surface subjected to two different thermal energy modulations. Instead of the conventional Fourier heat flux law to examine heat transfer characteristics, the Cattaneo–Christov heat flux (Fourier’s heat flux model) law is accounted for. The inhomogeneous nanomaterial model is used in mathematical modeling. The exponential form of thermal energy modulations is incorporated. The finite-difference technique along with Richardson extrapolation is used to treat the governing problem. The effects of the key parameters on flow distributions were analyzed in detail. Numerical calculations were performed to obtain correlations giving the reduced Nusselt number and the reduced Sherwood number in terms of relevant key parameters. The heat transfer rate of solar collectors increases due to the Marangoni convection. The thermophoresis phenomenon and chaotic movement of nanoparticles in a working fluid of solar collectors enhance the temperature distribution of the system. Furthermore, the thermal field is enhanced due to the thermal energy modulations. The results find applications in solar thermal exchanger manufacturing processes.</description><subject>Alternative energy sources</subject><subject>Alternative fuels</subject><subject>Convection</subject><subject>disk</subject><subject>Finite difference method</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Heat exchangers</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Magnetic fields</subject><subject>Manufacturing industry</subject><subject>Marangoni convection</subject><subject>Mathematical models</subject><subject>modified Fourier heat flux law</subject><subject>nanofluid</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Oil recovery</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>Solar heating</subject><subject>solar thermal exchangers</subject><subject>System effectiveness</subject><subject>Temperature distribution</subject><subject>Thermal energy</subject><subject>thermal energy modulations</subject><subject>Thermophoresis</subject><subject>Working fluids</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctuE0EQXCGQEoXc8gEjccVkXjsPbpbBiaUEDjHnUe88kjHrmWVmHcgtvxHxd3wJ6xih9KVb1dVVre6mOSP4A2Man8MwEEI5IQLrV80xxVLMGCfy9Yv6qDmtdYOn0IQpgo-b35ceRrQukGrwBeWAvkDKWxh9idCjfD-BkNAqhZji6NGnWL-jn3G8Q9cwDd3mFNEip3tvx5jTRzRH19nFEL1Dy7wr0Zc_j08VPbss-92vfdv3KOSCbnIPBa3vfNlOTjcPdfRbNB-GPlrYi9W3zZsAffWn__JJ8235eb24nF19vVgt5lczy4QcZ4pbxikTGISw2mkrFVfESaZ8izV2UpGOdS1lGlqmvbI02A6TFhRWLLiOnTSrg67LsDFDiVsoDyZDNM9ALrcGyhht7410TnBLOqlaxqWETgoROHW4050SVE9a7w5aQ8k_dr6OZjOdIU3rGyoIlRxTvGe9P7BsybUWH_67Emz23zQvv8n-Aj1vkuE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Basavarajappa, Mahanthesh</creator><creator>Lorenzini, Giulio</creator><creator>Narasimhamurthy, Srikantha</creator><creator>Albakri, Ashwag</creator><creator>Muhammad, Taseer</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2481-3842</orcidid><orcidid>https://orcid.org/0000-0001-5176-2898</orcidid><orcidid>https://orcid.org/0000-0002-5676-8575</orcidid></search><sort><creationdate>20211201</creationdate><title>Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications</title><author>Basavarajappa, Mahanthesh ; Lorenzini, Giulio ; Narasimhamurthy, Srikantha ; Albakri, Ashwag ; Muhammad, Taseer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Alternative fuels</topic><topic>Convection</topic><topic>disk</topic><topic>Finite difference method</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Heat exchangers</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Magnetic fields</topic><topic>Manufacturing industry</topic><topic>Marangoni convection</topic><topic>Mathematical models</topic><topic>modified Fourier heat flux law</topic><topic>nanofluid</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Oil recovery</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>Solar heating</topic><topic>solar thermal exchangers</topic><topic>System effectiveness</topic><topic>Temperature distribution</topic><topic>Thermal energy</topic><topic>thermal energy modulations</topic><topic>Thermophoresis</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basavarajappa, Mahanthesh</creatorcontrib><creatorcontrib>Lorenzini, Giulio</creatorcontrib><creatorcontrib>Narasimhamurthy, Srikantha</creatorcontrib><creatorcontrib>Albakri, Ashwag</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basavarajappa, Mahanthesh</au><au>Lorenzini, Giulio</au><au>Narasimhamurthy, Srikantha</au><au>Albakri, Ashwag</au><au>Muhammad, Taseer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications</atitle><jtitle>Applied sciences</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>24</issue><spage>11609</spage><pages>11609-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal energy into heat and electricity. However, improving the efficiency of solar thermal systems is the biggest challenge for researchers. Nanomaterial is an effective technique for improving the efficiency of STS’s by using nanomaterials as working fluids. Therefore, the present theoretical study aims to explore the thermal energy characteristics of the flow of nanomaterials generated by the surface gradient (Marangoni convection) on a disk surface subjected to two different thermal energy modulations. Instead of the conventional Fourier heat flux law to examine heat transfer characteristics, the Cattaneo–Christov heat flux (Fourier’s heat flux model) law is accounted for. The inhomogeneous nanomaterial model is used in mathematical modeling. The exponential form of thermal energy modulations is incorporated. The finite-difference technique along with Richardson extrapolation is used to treat the governing problem. The effects of the key parameters on flow distributions were analyzed in detail. Numerical calculations were performed to obtain correlations giving the reduced Nusselt number and the reduced Sherwood number in terms of relevant key parameters. The heat transfer rate of solar collectors increases due to the Marangoni convection. The thermophoresis phenomenon and chaotic movement of nanoparticles in a working fluid of solar collectors enhance the temperature distribution of the system. Furthermore, the thermal field is enhanced due to the thermal energy modulations. The results find applications in solar thermal exchanger manufacturing processes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app112411609</doi><orcidid>https://orcid.org/0000-0003-2481-3842</orcidid><orcidid>https://orcid.org/0000-0001-5176-2898</orcidid><orcidid>https://orcid.org/0000-0002-5676-8575</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2021-12, Vol.11 (24), p.11609 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7dd64c1b7853477ab766f42d0b9b8629 |
source | Publicly Available Content Database |
subjects | Alternative energy sources Alternative fuels Convection disk Finite difference method Fluctuations Fluid flow Fluids Heat exchangers Heat flux Heat transfer Magnetic fields Manufacturing industry Marangoni convection Mathematical models modified Fourier heat flux law nanofluid Nanomaterials Nanoparticles Nanotechnology Oil recovery Solar collectors Solar energy Solar heating solar thermal exchangers System effectiveness Temperature distribution Thermal energy thermal energy modulations Thermophoresis Working fluids |
title | Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20of%20Nanomaterial%20over%20an%20Infinite%20Disk%20with%20Marangoni%20Convection:%20A%20Modified%20Fourier%E2%80%99s%20Heat%20Flux%20Model%20for%20Solar%20Thermal%20System%20Applications&rft.jtitle=Applied%20sciences&rft.au=Basavarajappa,%20Mahanthesh&rft.date=2021-12-01&rft.volume=11&rft.issue=24&rft.spage=11609&rft.pages=11609-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app112411609&rft_dat=%3Cproquest_doaj_%3E2612740209%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612740209&rft_id=info:pmid/&rfr_iscdi=true |