Loading…

Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications

The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal ene...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-12, Vol.11 (24), p.11609
Main Authors: Basavarajappa, Mahanthesh, Lorenzini, Giulio, Narasimhamurthy, Srikantha, Albakri, Ashwag, Muhammad, Taseer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3
cites cdi_FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3
container_end_page
container_issue 24
container_start_page 11609
container_title Applied sciences
container_volume 11
creator Basavarajappa, Mahanthesh
Lorenzini, Giulio
Narasimhamurthy, Srikantha
Albakri, Ashwag
Muhammad, Taseer
description The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal energy into heat and electricity. However, improving the efficiency of solar thermal systems is the biggest challenge for researchers. Nanomaterial is an effective technique for improving the efficiency of STS’s by using nanomaterials as working fluids. Therefore, the present theoretical study aims to explore the thermal energy characteristics of the flow of nanomaterials generated by the surface gradient (Marangoni convection) on a disk surface subjected to two different thermal energy modulations. Instead of the conventional Fourier heat flux law to examine heat transfer characteristics, the Cattaneo–Christov heat flux (Fourier’s heat flux model) law is accounted for. The inhomogeneous nanomaterial model is used in mathematical modeling. The exponential form of thermal energy modulations is incorporated. The finite-difference technique along with Richardson extrapolation is used to treat the governing problem. The effects of the key parameters on flow distributions were analyzed in detail. Numerical calculations were performed to obtain correlations giving the reduced Nusselt number and the reduced Sherwood number in terms of relevant key parameters. The heat transfer rate of solar collectors increases due to the Marangoni convection. The thermophoresis phenomenon and chaotic movement of nanoparticles in a working fluid of solar collectors enhance the temperature distribution of the system. Furthermore, the thermal field is enhanced due to the thermal energy modulations. The results find applications in solar thermal exchanger manufacturing processes.
doi_str_mv 10.3390/app112411609
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7dd64c1b7853477ab766f42d0b9b8629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7dd64c1b7853477ab766f42d0b9b8629</doaj_id><sourcerecordid>2612740209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3</originalsourceid><addsrcrecordid>eNpNUctuE0EQXCGQEoXc8gEjccVkXjsPbpbBiaUEDjHnUe88kjHrmWVmHcgtvxHxd3wJ6xih9KVb1dVVre6mOSP4A2Man8MwEEI5IQLrV80xxVLMGCfy9Yv6qDmtdYOn0IQpgo-b35ceRrQukGrwBeWAvkDKWxh9idCjfD-BkNAqhZji6NGnWL-jn3G8Q9cwDd3mFNEip3tvx5jTRzRH19nFEL1Dy7wr0Zc_j08VPbss-92vfdv3KOSCbnIPBa3vfNlOTjcPdfRbNB-GPlrYi9W3zZsAffWn__JJ8235eb24nF19vVgt5lczy4QcZ4pbxikTGISw2mkrFVfESaZ8izV2UpGOdS1lGlqmvbI02A6TFhRWLLiOnTSrg67LsDFDiVsoDyZDNM9ALrcGyhht7410TnBLOqlaxqWETgoROHW4050SVE9a7w5aQ8k_dr6OZjOdIU3rGyoIlRxTvGe9P7BsybUWH_67Emz23zQvv8n-Aj1vkuE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612740209</pqid></control><display><type>article</type><title>Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications</title><source>Publicly Available Content Database</source><creator>Basavarajappa, Mahanthesh ; Lorenzini, Giulio ; Narasimhamurthy, Srikantha ; Albakri, Ashwag ; Muhammad, Taseer</creator><creatorcontrib>Basavarajappa, Mahanthesh ; Lorenzini, Giulio ; Narasimhamurthy, Srikantha ; Albakri, Ashwag ; Muhammad, Taseer</creatorcontrib><description>The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal energy into heat and electricity. However, improving the efficiency of solar thermal systems is the biggest challenge for researchers. Nanomaterial is an effective technique for improving the efficiency of STS’s by using nanomaterials as working fluids. Therefore, the present theoretical study aims to explore the thermal energy characteristics of the flow of nanomaterials generated by the surface gradient (Marangoni convection) on a disk surface subjected to two different thermal energy modulations. Instead of the conventional Fourier heat flux law to examine heat transfer characteristics, the Cattaneo–Christov heat flux (Fourier’s heat flux model) law is accounted for. The inhomogeneous nanomaterial model is used in mathematical modeling. The exponential form of thermal energy modulations is incorporated. The finite-difference technique along with Richardson extrapolation is used to treat the governing problem. The effects of the key parameters on flow distributions were analyzed in detail. Numerical calculations were performed to obtain correlations giving the reduced Nusselt number and the reduced Sherwood number in terms of relevant key parameters. The heat transfer rate of solar collectors increases due to the Marangoni convection. The thermophoresis phenomenon and chaotic movement of nanoparticles in a working fluid of solar collectors enhance the temperature distribution of the system. Furthermore, the thermal field is enhanced due to the thermal energy modulations. The results find applications in solar thermal exchanger manufacturing processes.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app112411609</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Alternative fuels ; Convection ; disk ; Finite difference method ; Fluctuations ; Fluid flow ; Fluids ; Heat exchangers ; Heat flux ; Heat transfer ; Magnetic fields ; Manufacturing industry ; Marangoni convection ; Mathematical models ; modified Fourier heat flux law ; nanofluid ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Oil recovery ; Solar collectors ; Solar energy ; Solar heating ; solar thermal exchangers ; System effectiveness ; Temperature distribution ; Thermal energy ; thermal energy modulations ; Thermophoresis ; Working fluids</subject><ispartof>Applied sciences, 2021-12, Vol.11 (24), p.11609</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3</citedby><cites>FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3</cites><orcidid>0000-0003-2481-3842 ; 0000-0001-5176-2898 ; 0000-0002-5676-8575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612740209/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612740209?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Basavarajappa, Mahanthesh</creatorcontrib><creatorcontrib>Lorenzini, Giulio</creatorcontrib><creatorcontrib>Narasimhamurthy, Srikantha</creatorcontrib><creatorcontrib>Albakri, Ashwag</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><title>Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications</title><title>Applied sciences</title><description>The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal energy into heat and electricity. However, improving the efficiency of solar thermal systems is the biggest challenge for researchers. Nanomaterial is an effective technique for improving the efficiency of STS’s by using nanomaterials as working fluids. Therefore, the present theoretical study aims to explore the thermal energy characteristics of the flow of nanomaterials generated by the surface gradient (Marangoni convection) on a disk surface subjected to two different thermal energy modulations. Instead of the conventional Fourier heat flux law to examine heat transfer characteristics, the Cattaneo–Christov heat flux (Fourier’s heat flux model) law is accounted for. The inhomogeneous nanomaterial model is used in mathematical modeling. The exponential form of thermal energy modulations is incorporated. The finite-difference technique along with Richardson extrapolation is used to treat the governing problem. The effects of the key parameters on flow distributions were analyzed in detail. Numerical calculations were performed to obtain correlations giving the reduced Nusselt number and the reduced Sherwood number in terms of relevant key parameters. The heat transfer rate of solar collectors increases due to the Marangoni convection. The thermophoresis phenomenon and chaotic movement of nanoparticles in a working fluid of solar collectors enhance the temperature distribution of the system. Furthermore, the thermal field is enhanced due to the thermal energy modulations. The results find applications in solar thermal exchanger manufacturing processes.</description><subject>Alternative energy sources</subject><subject>Alternative fuels</subject><subject>Convection</subject><subject>disk</subject><subject>Finite difference method</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Heat exchangers</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Magnetic fields</subject><subject>Manufacturing industry</subject><subject>Marangoni convection</subject><subject>Mathematical models</subject><subject>modified Fourier heat flux law</subject><subject>nanofluid</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Oil recovery</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>Solar heating</subject><subject>solar thermal exchangers</subject><subject>System effectiveness</subject><subject>Temperature distribution</subject><subject>Thermal energy</subject><subject>thermal energy modulations</subject><subject>Thermophoresis</subject><subject>Working fluids</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctuE0EQXCGQEoXc8gEjccVkXjsPbpbBiaUEDjHnUe88kjHrmWVmHcgtvxHxd3wJ6xih9KVb1dVVre6mOSP4A2Man8MwEEI5IQLrV80xxVLMGCfy9Yv6qDmtdYOn0IQpgo-b35ceRrQukGrwBeWAvkDKWxh9idCjfD-BkNAqhZji6NGnWL-jn3G8Q9cwDd3mFNEip3tvx5jTRzRH19nFEL1Dy7wr0Zc_j08VPbss-92vfdv3KOSCbnIPBa3vfNlOTjcPdfRbNB-GPlrYi9W3zZsAffWn__JJ8235eb24nF19vVgt5lczy4QcZ4pbxikTGISw2mkrFVfESaZ8izV2UpGOdS1lGlqmvbI02A6TFhRWLLiOnTSrg67LsDFDiVsoDyZDNM9ALrcGyhht7410TnBLOqlaxqWETgoROHW4050SVE9a7w5aQ8k_dr6OZjOdIU3rGyoIlRxTvGe9P7BsybUWH_67Emz23zQvv8n-Aj1vkuE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Basavarajappa, Mahanthesh</creator><creator>Lorenzini, Giulio</creator><creator>Narasimhamurthy, Srikantha</creator><creator>Albakri, Ashwag</creator><creator>Muhammad, Taseer</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2481-3842</orcidid><orcidid>https://orcid.org/0000-0001-5176-2898</orcidid><orcidid>https://orcid.org/0000-0002-5676-8575</orcidid></search><sort><creationdate>20211201</creationdate><title>Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications</title><author>Basavarajappa, Mahanthesh ; Lorenzini, Giulio ; Narasimhamurthy, Srikantha ; Albakri, Ashwag ; Muhammad, Taseer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Alternative fuels</topic><topic>Convection</topic><topic>disk</topic><topic>Finite difference method</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Heat exchangers</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Magnetic fields</topic><topic>Manufacturing industry</topic><topic>Marangoni convection</topic><topic>Mathematical models</topic><topic>modified Fourier heat flux law</topic><topic>nanofluid</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Oil recovery</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>Solar heating</topic><topic>solar thermal exchangers</topic><topic>System effectiveness</topic><topic>Temperature distribution</topic><topic>Thermal energy</topic><topic>thermal energy modulations</topic><topic>Thermophoresis</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basavarajappa, Mahanthesh</creatorcontrib><creatorcontrib>Lorenzini, Giulio</creatorcontrib><creatorcontrib>Narasimhamurthy, Srikantha</creatorcontrib><creatorcontrib>Albakri, Ashwag</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basavarajappa, Mahanthesh</au><au>Lorenzini, Giulio</au><au>Narasimhamurthy, Srikantha</au><au>Albakri, Ashwag</au><au>Muhammad, Taseer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications</atitle><jtitle>Applied sciences</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>24</issue><spage>11609</spage><pages>11609-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The demand for energy due to the population boom, together with the harmful consequences of fossil fuels, makes it essential to explore renewable thermal energy. Solar Thermal Systems (STS’s) are important alternatives to conventional fossil fuels, owing to their ability to convert solar thermal energy into heat and electricity. However, improving the efficiency of solar thermal systems is the biggest challenge for researchers. Nanomaterial is an effective technique for improving the efficiency of STS’s by using nanomaterials as working fluids. Therefore, the present theoretical study aims to explore the thermal energy characteristics of the flow of nanomaterials generated by the surface gradient (Marangoni convection) on a disk surface subjected to two different thermal energy modulations. Instead of the conventional Fourier heat flux law to examine heat transfer characteristics, the Cattaneo–Christov heat flux (Fourier’s heat flux model) law is accounted for. The inhomogeneous nanomaterial model is used in mathematical modeling. The exponential form of thermal energy modulations is incorporated. The finite-difference technique along with Richardson extrapolation is used to treat the governing problem. The effects of the key parameters on flow distributions were analyzed in detail. Numerical calculations were performed to obtain correlations giving the reduced Nusselt number and the reduced Sherwood number in terms of relevant key parameters. The heat transfer rate of solar collectors increases due to the Marangoni convection. The thermophoresis phenomenon and chaotic movement of nanoparticles in a working fluid of solar collectors enhance the temperature distribution of the system. Furthermore, the thermal field is enhanced due to the thermal energy modulations. The results find applications in solar thermal exchanger manufacturing processes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app112411609</doi><orcidid>https://orcid.org/0000-0003-2481-3842</orcidid><orcidid>https://orcid.org/0000-0001-5176-2898</orcidid><orcidid>https://orcid.org/0000-0002-5676-8575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2021-12, Vol.11 (24), p.11609
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7dd64c1b7853477ab766f42d0b9b8629
source Publicly Available Content Database
subjects Alternative energy sources
Alternative fuels
Convection
disk
Finite difference method
Fluctuations
Fluid flow
Fluids
Heat exchangers
Heat flux
Heat transfer
Magnetic fields
Manufacturing industry
Marangoni convection
Mathematical models
modified Fourier heat flux law
nanofluid
Nanomaterials
Nanoparticles
Nanotechnology
Oil recovery
Solar collectors
Solar energy
Solar heating
solar thermal exchangers
System effectiveness
Temperature distribution
Thermal energy
thermal energy modulations
Thermophoresis
Working fluids
title Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20of%20Nanomaterial%20over%20an%20Infinite%20Disk%20with%20Marangoni%20Convection:%20A%20Modified%20Fourier%E2%80%99s%20Heat%20Flux%20Model%20for%20Solar%20Thermal%20System%20Applications&rft.jtitle=Applied%20sciences&rft.au=Basavarajappa,%20Mahanthesh&rft.date=2021-12-01&rft.volume=11&rft.issue=24&rft.spage=11609&rft.pages=11609-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app112411609&rft_dat=%3Cproquest_doaj_%3E2612740209%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-84c342360a66c9d9c78481d738e5090d781b3b5239a539e8c2fcb015a8083fdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612740209&rft_id=info:pmid/&rfr_iscdi=true