Loading…

Optimal Neural Network Model for Short-Term Prediction of Confirmed Cases in the COVID-19 Pandemic

COVID-19 is one of the largest issues that humanity still has to cope with and has an impact on the daily lives of billions of people. Researchers from all around the world have made various attempts to establish accurate mathematical models of COVID-19 spread. In many branches of science, it is dif...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-10, Vol.10 (20), p.3804
Main Authors: Milić, Miljana, Milojković, Jelena, Jeremić, Miljan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:COVID-19 is one of the largest issues that humanity still has to cope with and has an impact on the daily lives of billions of people. Researchers from all around the world have made various attempts to establish accurate mathematical models of COVID-19 spread. In many branches of science, it is difficult to make accurate predictions about short time series with extremely irregular behavior. Artificial neural networks (ANNs) have lately been extensively used for such applications. Although ANNs may mimic the nonlinear behavior of short time series, they frequently struggle to handle all turbulences. Alternative methods must be used as a result. In order to reduce errors and boost forecasting confidence, a novel methodology that combines Time Delay Neural Networks is suggested in this work. Six separate datasets are used for its validation showing the number of confirmed daily COVID-19 infections in 2021 for six world countries. It is demonstrated that the method may greatly improve the individual networks’ forecasting accuracy independent of their topologies, which broadens the applicability of the approach. A series of additional predictive experiments involving state-of-the-art Extreme Learning Machine modeling were performed to quantitatively compare the accuracy of the proposed methodology with that of similar methodologies. It is shown that the forecasting accuracy of the system outperforms ELM modeling and is in the range of other state-of-the art solutions.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10203804