Loading…

Retrieval of particle size distribution based on a multi-objective genetic algorithm for multi-wavelength lidar

Introduction: Aerosols affect the radiation budget of the Earth’s atmospheric system. The aerosol particle size distribution (PSD) is one of the main parameters for characterizing the effect of aerosol on radiative forcing. Methods: The extinction coefficient and backscattering coefficient at 355 an...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in environmental science 2023-05, Vol.11
Main Authors: Bao, Jun, Qi, Liangliang, Mao, Jiandong, Gong, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c336t-a43984a3eca35a92ce3311e73b5925ff4e8195275c2f7bfab2fac0f9dd5480313
container_end_page
container_issue
container_start_page
container_title Frontiers in environmental science
container_volume 11
creator Bao, Jun
Qi, Liangliang
Mao, Jiandong
Gong, Xin
description Introduction: Aerosols affect the radiation budget of the Earth’s atmospheric system. The aerosol particle size distribution (PSD) is one of the main parameters for characterizing the effect of aerosol on radiative forcing. Methods: The extinction coefficient and backscattering coefficient at 355 and 532 nm and backscattering coefficient at 1064 nm of aerosol particles over Yinchuan area, China, which measured by a multi-wavelength lidar developed by North Minzu University, were used to retrieve the aerosol PSD. In view of the disadvantages of traditional regularization methods, the elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is selected to retrieve PSD. Results and Discussion: To verify the feasibility for retrieval of aerosol PSD, the NSGA-II with different errors in the input optical signal was simulated, in which the errors of the inverted PSD are still in the acceptable range when 35% error added into the optical parameters. Moreover, some experiments were carried out under different atmospheric conditions, including background sunny, cloudy and dusty days, and comparisons were performed with Multiple Population Genetic Algorithm (MPGA) and Simple Genetic Alogrithm (SGA) method. The results show that the retrieval effect of NSGA-II was better than that of MPGA and SGA, and the NSGA-II is very suitable for retrieve PSD by using the multi-wavelength lidar data.
doi_str_mv 10.3389/fenvs.2023.1136411
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7e284f35ff9e43a2b1fd2a7be8005d78</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7e284f35ff9e43a2b1fd2a7be8005d78</doaj_id><sourcerecordid>2814623243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a43984a3eca35a92ce3311e73b5925ff4e8195275c2f7bfab2fac0f9dd5480313</originalsourceid><addsrcrecordid>eNpNkU1rHDEMhofQQkKaP5CTIefZ2pI9H8cSknZhIVBa6M1oZuSNl9nx1vZuaX99Zj8oOUlIrx5JvEVxr-QCsWk_O54OaQEScKEUVlqpq-IGoK3KqjK_PrzLr4u7lDZSSoVgZt1NEb5zjp4PNIrgxI5i9v3IIvl_LAaf5l63zz5MoqPEg5gTEtv9mH0Zug332R9YrHnieUzQuA7R59etcCFeVH_owCNP6_wqRj9Q_FR8dDQmvrvE2-Ln89OPx2_l6uXr8vHLquwRq1ySxrbRhNwTGmqhZ0SluMbOtGCc09yo1kBtenB156gDR7107TAY3UhUeFssz9wh0Mbuot9S_GsDeXsqhLi2l19tzdBohzO1ZY0EnXIDUN1xI6UZ6mZmPZxZuxh-7zlluwn7OM3nW2iUrgBB46yCs6qPIaXI7v9WJe3RJ3vyyR59shef8A2kp4kD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814623243</pqid></control><display><type>article</type><title>Retrieval of particle size distribution based on a multi-objective genetic algorithm for multi-wavelength lidar</title><source>Publicly Available Content Database</source><creator>Bao, Jun ; Qi, Liangliang ; Mao, Jiandong ; Gong, Xin</creator><creatorcontrib>Bao, Jun ; Qi, Liangliang ; Mao, Jiandong ; Gong, Xin</creatorcontrib><description>Introduction: Aerosols affect the radiation budget of the Earth’s atmospheric system. The aerosol particle size distribution (PSD) is one of the main parameters for characterizing the effect of aerosol on radiative forcing. Methods: The extinction coefficient and backscattering coefficient at 355 and 532 nm and backscattering coefficient at 1064 nm of aerosol particles over Yinchuan area, China, which measured by a multi-wavelength lidar developed by North Minzu University, were used to retrieve the aerosol PSD. In view of the disadvantages of traditional regularization methods, the elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is selected to retrieve PSD. Results and Discussion: To verify the feasibility for retrieval of aerosol PSD, the NSGA-II with different errors in the input optical signal was simulated, in which the errors of the inverted PSD are still in the acceptable range when 35% error added into the optical parameters. Moreover, some experiments were carried out under different atmospheric conditions, including background sunny, cloudy and dusty days, and comparisons were performed with Multiple Population Genetic Algorithm (MPGA) and Simple Genetic Alogrithm (SGA) method. The results show that the retrieval effect of NSGA-II was better than that of MPGA and SGA, and the NSGA-II is very suitable for retrieve PSD by using the multi-wavelength lidar data.</description><identifier>ISSN: 2296-665X</identifier><identifier>EISSN: 2296-665X</identifier><identifier>DOI: 10.3389/fenvs.2023.1136411</identifier><language>eng</language><publisher>Lausanne: Frontiers Research Foundation</publisher><subject>aerosol ; Aerosols ; Algorithms ; Atmospheric aerosols ; Atmospheric conditions ; Backscattering ; Coefficients ; Environmental science ; Errors ; Genetic algorithms ; Growth factors ; Lidar ; multi-objective genetic algorithm ; multi-wavelength lidar ; NSGA-II ; Optical communication ; Optical properties ; Outdoor air quality ; Parameters ; Particle size ; Particle size distribution ; Population genetics ; Radiation ; Radiative forcing ; Regularization ; Regularization methods ; Remote sensing systems ; Retrieval ; Size distribution ; Sorting algorithms ; Wavelength</subject><ispartof>Frontiers in environmental science, 2023-05, Vol.11</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-a43984a3eca35a92ce3311e73b5925ff4e8195275c2f7bfab2fac0f9dd5480313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2814623243/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2814623243?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Bao, Jun</creatorcontrib><creatorcontrib>Qi, Liangliang</creatorcontrib><creatorcontrib>Mao, Jiandong</creatorcontrib><creatorcontrib>Gong, Xin</creatorcontrib><title>Retrieval of particle size distribution based on a multi-objective genetic algorithm for multi-wavelength lidar</title><title>Frontiers in environmental science</title><description>Introduction: Aerosols affect the radiation budget of the Earth’s atmospheric system. The aerosol particle size distribution (PSD) is one of the main parameters for characterizing the effect of aerosol on radiative forcing. Methods: The extinction coefficient and backscattering coefficient at 355 and 532 nm and backscattering coefficient at 1064 nm of aerosol particles over Yinchuan area, China, which measured by a multi-wavelength lidar developed by North Minzu University, were used to retrieve the aerosol PSD. In view of the disadvantages of traditional regularization methods, the elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is selected to retrieve PSD. Results and Discussion: To verify the feasibility for retrieval of aerosol PSD, the NSGA-II with different errors in the input optical signal was simulated, in which the errors of the inverted PSD are still in the acceptable range when 35% error added into the optical parameters. Moreover, some experiments were carried out under different atmospheric conditions, including background sunny, cloudy and dusty days, and comparisons were performed with Multiple Population Genetic Algorithm (MPGA) and Simple Genetic Alogrithm (SGA) method. The results show that the retrieval effect of NSGA-II was better than that of MPGA and SGA, and the NSGA-II is very suitable for retrieve PSD by using the multi-wavelength lidar data.</description><subject>aerosol</subject><subject>Aerosols</subject><subject>Algorithms</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric conditions</subject><subject>Backscattering</subject><subject>Coefficients</subject><subject>Environmental science</subject><subject>Errors</subject><subject>Genetic algorithms</subject><subject>Growth factors</subject><subject>Lidar</subject><subject>multi-objective genetic algorithm</subject><subject>multi-wavelength lidar</subject><subject>NSGA-II</subject><subject>Optical communication</subject><subject>Optical properties</subject><subject>Outdoor air quality</subject><subject>Parameters</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Population genetics</subject><subject>Radiation</subject><subject>Radiative forcing</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Remote sensing systems</subject><subject>Retrieval</subject><subject>Size distribution</subject><subject>Sorting algorithms</subject><subject>Wavelength</subject><issn>2296-665X</issn><issn>2296-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1rHDEMhofQQkKaP5CTIefZ2pI9H8cSknZhIVBa6M1oZuSNl9nx1vZuaX99Zj8oOUlIrx5JvEVxr-QCsWk_O54OaQEScKEUVlqpq-IGoK3KqjK_PrzLr4u7lDZSSoVgZt1NEb5zjp4PNIrgxI5i9v3IIvl_LAaf5l63zz5MoqPEg5gTEtv9mH0Zug332R9YrHnieUzQuA7R59etcCFeVH_owCNP6_wqRj9Q_FR8dDQmvrvE2-Ln89OPx2_l6uXr8vHLquwRq1ySxrbRhNwTGmqhZ0SluMbOtGCc09yo1kBtenB156gDR7107TAY3UhUeFssz9wh0Mbuot9S_GsDeXsqhLi2l19tzdBohzO1ZY0EnXIDUN1xI6UZ6mZmPZxZuxh-7zlluwn7OM3nW2iUrgBB46yCs6qPIaXI7v9WJe3RJ3vyyR59shef8A2kp4kD</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Bao, Jun</creator><creator>Qi, Liangliang</creator><creator>Mao, Jiandong</creator><creator>Gong, Xin</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20230518</creationdate><title>Retrieval of particle size distribution based on a multi-objective genetic algorithm for multi-wavelength lidar</title><author>Bao, Jun ; Qi, Liangliang ; Mao, Jiandong ; Gong, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a43984a3eca35a92ce3311e73b5925ff4e8195275c2f7bfab2fac0f9dd5480313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aerosol</topic><topic>Aerosols</topic><topic>Algorithms</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric conditions</topic><topic>Backscattering</topic><topic>Coefficients</topic><topic>Environmental science</topic><topic>Errors</topic><topic>Genetic algorithms</topic><topic>Growth factors</topic><topic>Lidar</topic><topic>multi-objective genetic algorithm</topic><topic>multi-wavelength lidar</topic><topic>NSGA-II</topic><topic>Optical communication</topic><topic>Optical properties</topic><topic>Outdoor air quality</topic><topic>Parameters</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Population genetics</topic><topic>Radiation</topic><topic>Radiative forcing</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Remote sensing systems</topic><topic>Retrieval</topic><topic>Size distribution</topic><topic>Sorting algorithms</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Jun</creatorcontrib><creatorcontrib>Qi, Liangliang</creatorcontrib><creatorcontrib>Mao, Jiandong</creatorcontrib><creatorcontrib>Gong, Xin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Jun</au><au>Qi, Liangliang</au><au>Mao, Jiandong</au><au>Gong, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval of particle size distribution based on a multi-objective genetic algorithm for multi-wavelength lidar</atitle><jtitle>Frontiers in environmental science</jtitle><date>2023-05-18</date><risdate>2023</risdate><volume>11</volume><issn>2296-665X</issn><eissn>2296-665X</eissn><abstract>Introduction: Aerosols affect the radiation budget of the Earth’s atmospheric system. The aerosol particle size distribution (PSD) is one of the main parameters for characterizing the effect of aerosol on radiative forcing. Methods: The extinction coefficient and backscattering coefficient at 355 and 532 nm and backscattering coefficient at 1064 nm of aerosol particles over Yinchuan area, China, which measured by a multi-wavelength lidar developed by North Minzu University, were used to retrieve the aerosol PSD. In view of the disadvantages of traditional regularization methods, the elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is selected to retrieve PSD. Results and Discussion: To verify the feasibility for retrieval of aerosol PSD, the NSGA-II with different errors in the input optical signal was simulated, in which the errors of the inverted PSD are still in the acceptable range when 35% error added into the optical parameters. Moreover, some experiments were carried out under different atmospheric conditions, including background sunny, cloudy and dusty days, and comparisons were performed with Multiple Population Genetic Algorithm (MPGA) and Simple Genetic Alogrithm (SGA) method. The results show that the retrieval effect of NSGA-II was better than that of MPGA and SGA, and the NSGA-II is very suitable for retrieve PSD by using the multi-wavelength lidar data.</abstract><cop>Lausanne</cop><pub>Frontiers Research Foundation</pub><doi>10.3389/fenvs.2023.1136411</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-665X
ispartof Frontiers in environmental science, 2023-05, Vol.11
issn 2296-665X
2296-665X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7e284f35ff9e43a2b1fd2a7be8005d78
source Publicly Available Content Database
subjects aerosol
Aerosols
Algorithms
Atmospheric aerosols
Atmospheric conditions
Backscattering
Coefficients
Environmental science
Errors
Genetic algorithms
Growth factors
Lidar
multi-objective genetic algorithm
multi-wavelength lidar
NSGA-II
Optical communication
Optical properties
Outdoor air quality
Parameters
Particle size
Particle size distribution
Population genetics
Radiation
Radiative forcing
Regularization
Regularization methods
Remote sensing systems
Retrieval
Size distribution
Sorting algorithms
Wavelength
title Retrieval of particle size distribution based on a multi-objective genetic algorithm for multi-wavelength lidar
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval%20of%20particle%20size%20distribution%20based%20on%20a%20multi-objective%20genetic%20algorithm%20for%20multi-wavelength%20lidar&rft.jtitle=Frontiers%20in%20environmental%20science&rft.au=Bao,%20Jun&rft.date=2023-05-18&rft.volume=11&rft.issn=2296-665X&rft.eissn=2296-665X&rft_id=info:doi/10.3389/fenvs.2023.1136411&rft_dat=%3Cproquest_doaj_%3E2814623243%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-a43984a3eca35a92ce3311e73b5925ff4e8195275c2f7bfab2fac0f9dd5480313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814623243&rft_id=info:pmid/&rfr_iscdi=true