Loading…
A new approach to the intracardiac inverse problem using Laplacian distance kernel
The inverse problem in electrophysiology consists of the accurate estimation of the intracardiac electrical sources from a reduced set of electrodes at short distances and from outside the heart. This estimation can provide an image with relevant knowledge on arrhythmia mechanisms for the clinical p...
Saved in:
Published in: | Biomedical engineering online 2018-06, Vol.17 (1), p.86-86, Article 86 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53 |
---|---|
cites | cdi_FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53 |
container_end_page | 86 |
container_issue | 1 |
container_start_page | 86 |
container_title | Biomedical engineering online |
container_volume | 17 |
creator | Caulier-Cisterna, Raúl Muñoz-Romero, Sergio Sanromán-Junquera, Margarita García-Alberola, Arcadi Rojo-Álvarez, José Luis |
description | The inverse problem in electrophysiology consists of the accurate estimation of the intracardiac electrical sources from a reduced set of electrodes at short distances and from outside the heart. This estimation can provide an image with relevant knowledge on arrhythmia mechanisms for the clinical practice. Methods based on truncated singular value decomposition (TSVD) and regularized least squares require a matrix inversion, which limits their resolution due to the unavoidable low-pass filter effect of the Tikhonov regularization techniques.
We propose to use, for the first time, a Mercer's kernel given by the Laplacian of the distance in the quasielectrostatic field equations, hence providing a Support Vector Regression (SVR) formulation by following the principles of the Dual Signal Model (DSM) principles for creating kernel algorithms.
Simulations in one- and two-dimensional models show the performance of our Laplacian distance kernel technique versus several conventional methods. Firstly, the one-dimensional model is adjusted for yielding recorded electrograms, similar to the ones that are usually observed in electrophysiological studies, and suitable strategy is designed for the free-parameter search. Secondly, simulations both in one- and two-dimensional models show larger noise sensitivity in the estimated transfer matrix than in the observation measurements, and DSM-SVR is shown to be more robust to noisy transfer matrix than TSVD.
These results suggest that our proposed DSM-SVR with Laplacian distance kernel can be an efficient alternative to improve the resolution in current and emerging intracardiac imaging systems. |
doi_str_mv | 10.1186/s12938-018-0519-z |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7e47d7e4dd4744ef9a4e585979df3f1a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546901352</galeid><doaj_id>oai_doaj_org_article_7e47d7e4dd4744ef9a4e585979df3f1a</doaj_id><sourcerecordid>A546901352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53</originalsourceid><addsrcrecordid>eNptkl2L1DAUhoso7rr6A7yRgjd60TVpk7a5EYbFj4EBYVXwLpwmp52MbVKTdtX99abOum5FQr5OnvOSnLxJ8pSSc0rr8lWguSjqjNDYORXZ9b3klLKKZyLnX-7fWZ8kj0I4EJITUoqHyUkuYrSo2WlyuUktfk9hHL0DtU8nl057TI2dPCjw2oCKmyv0AdOIND0O6RyM7dIdjD0oAzbVJkxgFaZf0VvsHycPWugDPrmZz5LPb998unif7T68215sdpnigk1Z3tCGNTlHZLQAznStBVclrVTBcLmdUA1WtRIlqVgBhOlcMNG0LSOEMODFWbI96moHBzl6M4D_KR0Y-TvgfCfBT0b1KCtklY6D1qxiDFsBDHnNRSV0W7QUotbro9Y4NwNqhcv7-5Xo-sSavezclSwJpSynUeDFjYB332YMkxxMUNj3YNHNQeaEV3XJi1JE9Pk_6MHN3sZSRaqinNCyzP9SHcQHGNu65UcWUbnhrBSEFnyhzv9DxaZxMMpZbE2MrxJerhIiM-GPqYM5BLn9eLlm6ZFV3oXgsb2tByVyMaA8GlBGA8rFgPI65jy7W8jbjD-OK34BaorUQQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071501662</pqid></control><display><type>article</type><title>A new approach to the intracardiac inverse problem using Laplacian distance kernel</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Caulier-Cisterna, Raúl ; Muñoz-Romero, Sergio ; Sanromán-Junquera, Margarita ; García-Alberola, Arcadi ; Rojo-Álvarez, José Luis</creator><creatorcontrib>Caulier-Cisterna, Raúl ; Muñoz-Romero, Sergio ; Sanromán-Junquera, Margarita ; García-Alberola, Arcadi ; Rojo-Álvarez, José Luis</creatorcontrib><description>The inverse problem in electrophysiology consists of the accurate estimation of the intracardiac electrical sources from a reduced set of electrodes at short distances and from outside the heart. This estimation can provide an image with relevant knowledge on arrhythmia mechanisms for the clinical practice. Methods based on truncated singular value decomposition (TSVD) and regularized least squares require a matrix inversion, which limits their resolution due to the unavoidable low-pass filter effect of the Tikhonov regularization techniques.
We propose to use, for the first time, a Mercer's kernel given by the Laplacian of the distance in the quasielectrostatic field equations, hence providing a Support Vector Regression (SVR) formulation by following the principles of the Dual Signal Model (DSM) principles for creating kernel algorithms.
Simulations in one- and two-dimensional models show the performance of our Laplacian distance kernel technique versus several conventional methods. Firstly, the one-dimensional model is adjusted for yielding recorded electrograms, similar to the ones that are usually observed in electrophysiological studies, and suitable strategy is designed for the free-parameter search. Secondly, simulations both in one- and two-dimensional models show larger noise sensitivity in the estimated transfer matrix than in the observation measurements, and DSM-SVR is shown to be more robust to noisy transfer matrix than TSVD.
These results suggest that our proposed DSM-SVR with Laplacian distance kernel can be an efficient alternative to improve the resolution in current and emerging intracardiac imaging systems.</description><identifier>ISSN: 1475-925X</identifier><identifier>EISSN: 1475-925X</identifier><identifier>DOI: 10.1186/s12938-018-0519-z</identifier><identifier>PMID: 29925384</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Arrhythmia ; Computer simulation ; Diagnosis ; Dual Signal Model ; Electrocardiography ; Electroencephalography ; Electrophysiological Phenomena ; Electrophysiology ; Heart - physiology ; Inverse problem ; Inverse problems ; Laplacian ; Least-Squares Analysis ; Low pass filters ; Medical imaging ; Medical imaging equipment ; Mercer’s kernel ; Models, Cardiovascular ; Noise sensitivity ; One dimensional models ; Regularization ; Signal processing ; Signal-To-Noise Ratio ; Singular value decomposition ; Support Vector Machine ; Support vector machines ; Support Vector Regression ; Two dimensional models</subject><ispartof>Biomedical engineering online, 2018-06, Vol.17 (1), p.86-86, Article 86</ispartof><rights>COPYRIGHT 2018 BioMed Central Ltd.</rights><rights>Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53</citedby><cites>FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53</cites><orcidid>0000-0002-0125-485X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6011421/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2071501662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29925384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caulier-Cisterna, Raúl</creatorcontrib><creatorcontrib>Muñoz-Romero, Sergio</creatorcontrib><creatorcontrib>Sanromán-Junquera, Margarita</creatorcontrib><creatorcontrib>García-Alberola, Arcadi</creatorcontrib><creatorcontrib>Rojo-Álvarez, José Luis</creatorcontrib><title>A new approach to the intracardiac inverse problem using Laplacian distance kernel</title><title>Biomedical engineering online</title><addtitle>Biomed Eng Online</addtitle><description>The inverse problem in electrophysiology consists of the accurate estimation of the intracardiac electrical sources from a reduced set of electrodes at short distances and from outside the heart. This estimation can provide an image with relevant knowledge on arrhythmia mechanisms for the clinical practice. Methods based on truncated singular value decomposition (TSVD) and regularized least squares require a matrix inversion, which limits their resolution due to the unavoidable low-pass filter effect of the Tikhonov regularization techniques.
We propose to use, for the first time, a Mercer's kernel given by the Laplacian of the distance in the quasielectrostatic field equations, hence providing a Support Vector Regression (SVR) formulation by following the principles of the Dual Signal Model (DSM) principles for creating kernel algorithms.
Simulations in one- and two-dimensional models show the performance of our Laplacian distance kernel technique versus several conventional methods. Firstly, the one-dimensional model is adjusted for yielding recorded electrograms, similar to the ones that are usually observed in electrophysiological studies, and suitable strategy is designed for the free-parameter search. Secondly, simulations both in one- and two-dimensional models show larger noise sensitivity in the estimated transfer matrix than in the observation measurements, and DSM-SVR is shown to be more robust to noisy transfer matrix than TSVD.
These results suggest that our proposed DSM-SVR with Laplacian distance kernel can be an efficient alternative to improve the resolution in current and emerging intracardiac imaging systems.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Computer simulation</subject><subject>Diagnosis</subject><subject>Dual Signal Model</subject><subject>Electrocardiography</subject><subject>Electroencephalography</subject><subject>Electrophysiological Phenomena</subject><subject>Electrophysiology</subject><subject>Heart - physiology</subject><subject>Inverse problem</subject><subject>Inverse problems</subject><subject>Laplacian</subject><subject>Least-Squares Analysis</subject><subject>Low pass filters</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Mercer’s kernel</subject><subject>Models, Cardiovascular</subject><subject>Noise sensitivity</subject><subject>One dimensional models</subject><subject>Regularization</subject><subject>Signal processing</subject><subject>Signal-To-Noise Ratio</subject><subject>Singular value decomposition</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Support Vector Regression</subject><subject>Two dimensional models</subject><issn>1475-925X</issn><issn>1475-925X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl2L1DAUhoso7rr6A7yRgjd60TVpk7a5EYbFj4EBYVXwLpwmp52MbVKTdtX99abOum5FQr5OnvOSnLxJ8pSSc0rr8lWguSjqjNDYORXZ9b3klLKKZyLnX-7fWZ8kj0I4EJITUoqHyUkuYrSo2WlyuUktfk9hHL0DtU8nl057TI2dPCjw2oCKmyv0AdOIND0O6RyM7dIdjD0oAzbVJkxgFaZf0VvsHycPWugDPrmZz5LPb998unif7T68215sdpnigk1Z3tCGNTlHZLQAznStBVclrVTBcLmdUA1WtRIlqVgBhOlcMNG0LSOEMODFWbI96moHBzl6M4D_KR0Y-TvgfCfBT0b1KCtklY6D1qxiDFsBDHnNRSV0W7QUotbro9Y4NwNqhcv7-5Xo-sSavezclSwJpSynUeDFjYB332YMkxxMUNj3YNHNQeaEV3XJi1JE9Pk_6MHN3sZSRaqinNCyzP9SHcQHGNu65UcWUbnhrBSEFnyhzv9DxaZxMMpZbE2MrxJerhIiM-GPqYM5BLn9eLlm6ZFV3oXgsb2tByVyMaA8GlBGA8rFgPI65jy7W8jbjD-OK34BaorUQQ</recordid><startdate>20180620</startdate><enddate>20180620</enddate><creator>Caulier-Cisterna, Raúl</creator><creator>Muñoz-Romero, Sergio</creator><creator>Sanromán-Junquera, Margarita</creator><creator>García-Alberola, Arcadi</creator><creator>Rojo-Álvarez, José Luis</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0125-485X</orcidid></search><sort><creationdate>20180620</creationdate><title>A new approach to the intracardiac inverse problem using Laplacian distance kernel</title><author>Caulier-Cisterna, Raúl ; Muñoz-Romero, Sergio ; Sanromán-Junquera, Margarita ; García-Alberola, Arcadi ; Rojo-Álvarez, José Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Computer simulation</topic><topic>Diagnosis</topic><topic>Dual Signal Model</topic><topic>Electrocardiography</topic><topic>Electroencephalography</topic><topic>Electrophysiological Phenomena</topic><topic>Electrophysiology</topic><topic>Heart - physiology</topic><topic>Inverse problem</topic><topic>Inverse problems</topic><topic>Laplacian</topic><topic>Least-Squares Analysis</topic><topic>Low pass filters</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Mercer’s kernel</topic><topic>Models, Cardiovascular</topic><topic>Noise sensitivity</topic><topic>One dimensional models</topic><topic>Regularization</topic><topic>Signal processing</topic><topic>Signal-To-Noise Ratio</topic><topic>Singular value decomposition</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Support Vector Regression</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caulier-Cisterna, Raúl</creatorcontrib><creatorcontrib>Muñoz-Romero, Sergio</creatorcontrib><creatorcontrib>Sanromán-Junquera, Margarita</creatorcontrib><creatorcontrib>García-Alberola, Arcadi</creatorcontrib><creatorcontrib>Rojo-Álvarez, José Luis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomedical engineering online</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caulier-Cisterna, Raúl</au><au>Muñoz-Romero, Sergio</au><au>Sanromán-Junquera, Margarita</au><au>García-Alberola, Arcadi</au><au>Rojo-Álvarez, José Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to the intracardiac inverse problem using Laplacian distance kernel</atitle><jtitle>Biomedical engineering online</jtitle><addtitle>Biomed Eng Online</addtitle><date>2018-06-20</date><risdate>2018</risdate><volume>17</volume><issue>1</issue><spage>86</spage><epage>86</epage><pages>86-86</pages><artnum>86</artnum><issn>1475-925X</issn><eissn>1475-925X</eissn><abstract>The inverse problem in electrophysiology consists of the accurate estimation of the intracardiac electrical sources from a reduced set of electrodes at short distances and from outside the heart. This estimation can provide an image with relevant knowledge on arrhythmia mechanisms for the clinical practice. Methods based on truncated singular value decomposition (TSVD) and regularized least squares require a matrix inversion, which limits their resolution due to the unavoidable low-pass filter effect of the Tikhonov regularization techniques.
We propose to use, for the first time, a Mercer's kernel given by the Laplacian of the distance in the quasielectrostatic field equations, hence providing a Support Vector Regression (SVR) formulation by following the principles of the Dual Signal Model (DSM) principles for creating kernel algorithms.
Simulations in one- and two-dimensional models show the performance of our Laplacian distance kernel technique versus several conventional methods. Firstly, the one-dimensional model is adjusted for yielding recorded electrograms, similar to the ones that are usually observed in electrophysiological studies, and suitable strategy is designed for the free-parameter search. Secondly, simulations both in one- and two-dimensional models show larger noise sensitivity in the estimated transfer matrix than in the observation measurements, and DSM-SVR is shown to be more robust to noisy transfer matrix than TSVD.
These results suggest that our proposed DSM-SVR with Laplacian distance kernel can be an efficient alternative to improve the resolution in current and emerging intracardiac imaging systems.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>29925384</pmid><doi>10.1186/s12938-018-0519-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0125-485X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-925X |
ispartof | Biomedical engineering online, 2018-06, Vol.17 (1), p.86-86, Article 86 |
issn | 1475-925X 1475-925X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7e47d7e4dd4744ef9a4e585979df3f1a |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Arrhythmia Computer simulation Diagnosis Dual Signal Model Electrocardiography Electroencephalography Electrophysiological Phenomena Electrophysiology Heart - physiology Inverse problem Inverse problems Laplacian Least-Squares Analysis Low pass filters Medical imaging Medical imaging equipment Mercer’s kernel Models, Cardiovascular Noise sensitivity One dimensional models Regularization Signal processing Signal-To-Noise Ratio Singular value decomposition Support Vector Machine Support vector machines Support Vector Regression Two dimensional models |
title | A new approach to the intracardiac inverse problem using Laplacian distance kernel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20the%20intracardiac%20inverse%20problem%20using%20Laplacian%20distance%20kernel&rft.jtitle=Biomedical%20engineering%20online&rft.au=Caulier-Cisterna,%20Ra%C3%BAl&rft.date=2018-06-20&rft.volume=17&rft.issue=1&rft.spage=86&rft.epage=86&rft.pages=86-86&rft.artnum=86&rft.issn=1475-925X&rft.eissn=1475-925X&rft_id=info:doi/10.1186/s12938-018-0519-z&rft_dat=%3Cgale_doaj_%3EA546901352%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071501662&rft_id=info:pmid/29925384&rft_galeid=A546901352&rfr_iscdi=true |