Loading…

A new approach to the intracardiac inverse problem using Laplacian distance kernel

The inverse problem in electrophysiology consists of the accurate estimation of the intracardiac electrical sources from a reduced set of electrodes at short distances and from outside the heart. This estimation can provide an image with relevant knowledge on arrhythmia mechanisms for the clinical p...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical engineering online 2018-06, Vol.17 (1), p.86-86, Article 86
Main Authors: Caulier-Cisterna, Raúl, Muñoz-Romero, Sergio, Sanromán-Junquera, Margarita, García-Alberola, Arcadi, Rojo-Álvarez, José Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53
cites cdi_FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53
container_end_page 86
container_issue 1
container_start_page 86
container_title Biomedical engineering online
container_volume 17
creator Caulier-Cisterna, Raúl
Muñoz-Romero, Sergio
Sanromán-Junquera, Margarita
García-Alberola, Arcadi
Rojo-Álvarez, José Luis
description The inverse problem in electrophysiology consists of the accurate estimation of the intracardiac electrical sources from a reduced set of electrodes at short distances and from outside the heart. This estimation can provide an image with relevant knowledge on arrhythmia mechanisms for the clinical practice. Methods based on truncated singular value decomposition (TSVD) and regularized least squares require a matrix inversion, which limits their resolution due to the unavoidable low-pass filter effect of the Tikhonov regularization techniques. We propose to use, for the first time, a Mercer's kernel given by the Laplacian of the distance in the quasielectrostatic field equations, hence providing a Support Vector Regression (SVR) formulation by following the principles of the Dual Signal Model (DSM) principles for creating kernel algorithms. Simulations in one- and two-dimensional models show the performance of our Laplacian distance kernel technique versus several conventional methods. Firstly, the one-dimensional model is adjusted for yielding recorded electrograms, similar to the ones that are usually observed in electrophysiological studies, and suitable strategy is designed for the free-parameter search. Secondly, simulations both in one- and two-dimensional models show larger noise sensitivity in the estimated transfer matrix than in the observation measurements, and DSM-SVR is shown to be more robust to noisy transfer matrix than TSVD. These results suggest that our proposed DSM-SVR with Laplacian distance kernel can be an efficient alternative to improve the resolution in current and emerging intracardiac imaging systems.
doi_str_mv 10.1186/s12938-018-0519-z
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7e47d7e4dd4744ef9a4e585979df3f1a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546901352</galeid><doaj_id>oai_doaj_org_article_7e47d7e4dd4744ef9a4e585979df3f1a</doaj_id><sourcerecordid>A546901352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53</originalsourceid><addsrcrecordid>eNptkl2L1DAUhoso7rr6A7yRgjd60TVpk7a5EYbFj4EBYVXwLpwmp52MbVKTdtX99abOum5FQr5OnvOSnLxJ8pSSc0rr8lWguSjqjNDYORXZ9b3klLKKZyLnX-7fWZ8kj0I4EJITUoqHyUkuYrSo2WlyuUktfk9hHL0DtU8nl057TI2dPCjw2oCKmyv0AdOIND0O6RyM7dIdjD0oAzbVJkxgFaZf0VvsHycPWugDPrmZz5LPb998unif7T68215sdpnigk1Z3tCGNTlHZLQAznStBVclrVTBcLmdUA1WtRIlqVgBhOlcMNG0LSOEMODFWbI96moHBzl6M4D_KR0Y-TvgfCfBT0b1KCtklY6D1qxiDFsBDHnNRSV0W7QUotbro9Y4NwNqhcv7-5Xo-sSavezclSwJpSynUeDFjYB332YMkxxMUNj3YNHNQeaEV3XJi1JE9Pk_6MHN3sZSRaqinNCyzP9SHcQHGNu65UcWUbnhrBSEFnyhzv9DxaZxMMpZbE2MrxJerhIiM-GPqYM5BLn9eLlm6ZFV3oXgsb2tByVyMaA8GlBGA8rFgPI65jy7W8jbjD-OK34BaorUQQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071501662</pqid></control><display><type>article</type><title>A new approach to the intracardiac inverse problem using Laplacian distance kernel</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Caulier-Cisterna, Raúl ; Muñoz-Romero, Sergio ; Sanromán-Junquera, Margarita ; García-Alberola, Arcadi ; Rojo-Álvarez, José Luis</creator><creatorcontrib>Caulier-Cisterna, Raúl ; Muñoz-Romero, Sergio ; Sanromán-Junquera, Margarita ; García-Alberola, Arcadi ; Rojo-Álvarez, José Luis</creatorcontrib><description>The inverse problem in electrophysiology consists of the accurate estimation of the intracardiac electrical sources from a reduced set of electrodes at short distances and from outside the heart. This estimation can provide an image with relevant knowledge on arrhythmia mechanisms for the clinical practice. Methods based on truncated singular value decomposition (TSVD) and regularized least squares require a matrix inversion, which limits their resolution due to the unavoidable low-pass filter effect of the Tikhonov regularization techniques. We propose to use, for the first time, a Mercer's kernel given by the Laplacian of the distance in the quasielectrostatic field equations, hence providing a Support Vector Regression (SVR) formulation by following the principles of the Dual Signal Model (DSM) principles for creating kernel algorithms. Simulations in one- and two-dimensional models show the performance of our Laplacian distance kernel technique versus several conventional methods. Firstly, the one-dimensional model is adjusted for yielding recorded electrograms, similar to the ones that are usually observed in electrophysiological studies, and suitable strategy is designed for the free-parameter search. Secondly, simulations both in one- and two-dimensional models show larger noise sensitivity in the estimated transfer matrix than in the observation measurements, and DSM-SVR is shown to be more robust to noisy transfer matrix than TSVD. These results suggest that our proposed DSM-SVR with Laplacian distance kernel can be an efficient alternative to improve the resolution in current and emerging intracardiac imaging systems.</description><identifier>ISSN: 1475-925X</identifier><identifier>EISSN: 1475-925X</identifier><identifier>DOI: 10.1186/s12938-018-0519-z</identifier><identifier>PMID: 29925384</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Arrhythmia ; Computer simulation ; Diagnosis ; Dual Signal Model ; Electrocardiography ; Electroencephalography ; Electrophysiological Phenomena ; Electrophysiology ; Heart - physiology ; Inverse problem ; Inverse problems ; Laplacian ; Least-Squares Analysis ; Low pass filters ; Medical imaging ; Medical imaging equipment ; Mercer’s kernel ; Models, Cardiovascular ; Noise sensitivity ; One dimensional models ; Regularization ; Signal processing ; Signal-To-Noise Ratio ; Singular value decomposition ; Support Vector Machine ; Support vector machines ; Support Vector Regression ; Two dimensional models</subject><ispartof>Biomedical engineering online, 2018-06, Vol.17 (1), p.86-86, Article 86</ispartof><rights>COPYRIGHT 2018 BioMed Central Ltd.</rights><rights>Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53</citedby><cites>FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53</cites><orcidid>0000-0002-0125-485X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6011421/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2071501662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29925384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caulier-Cisterna, Raúl</creatorcontrib><creatorcontrib>Muñoz-Romero, Sergio</creatorcontrib><creatorcontrib>Sanromán-Junquera, Margarita</creatorcontrib><creatorcontrib>García-Alberola, Arcadi</creatorcontrib><creatorcontrib>Rojo-Álvarez, José Luis</creatorcontrib><title>A new approach to the intracardiac inverse problem using Laplacian distance kernel</title><title>Biomedical engineering online</title><addtitle>Biomed Eng Online</addtitle><description>The inverse problem in electrophysiology consists of the accurate estimation of the intracardiac electrical sources from a reduced set of electrodes at short distances and from outside the heart. This estimation can provide an image with relevant knowledge on arrhythmia mechanisms for the clinical practice. Methods based on truncated singular value decomposition (TSVD) and regularized least squares require a matrix inversion, which limits their resolution due to the unavoidable low-pass filter effect of the Tikhonov regularization techniques. We propose to use, for the first time, a Mercer's kernel given by the Laplacian of the distance in the quasielectrostatic field equations, hence providing a Support Vector Regression (SVR) formulation by following the principles of the Dual Signal Model (DSM) principles for creating kernel algorithms. Simulations in one- and two-dimensional models show the performance of our Laplacian distance kernel technique versus several conventional methods. Firstly, the one-dimensional model is adjusted for yielding recorded electrograms, similar to the ones that are usually observed in electrophysiological studies, and suitable strategy is designed for the free-parameter search. Secondly, simulations both in one- and two-dimensional models show larger noise sensitivity in the estimated transfer matrix than in the observation measurements, and DSM-SVR is shown to be more robust to noisy transfer matrix than TSVD. These results suggest that our proposed DSM-SVR with Laplacian distance kernel can be an efficient alternative to improve the resolution in current and emerging intracardiac imaging systems.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Computer simulation</subject><subject>Diagnosis</subject><subject>Dual Signal Model</subject><subject>Electrocardiography</subject><subject>Electroencephalography</subject><subject>Electrophysiological Phenomena</subject><subject>Electrophysiology</subject><subject>Heart - physiology</subject><subject>Inverse problem</subject><subject>Inverse problems</subject><subject>Laplacian</subject><subject>Least-Squares Analysis</subject><subject>Low pass filters</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Mercer’s kernel</subject><subject>Models, Cardiovascular</subject><subject>Noise sensitivity</subject><subject>One dimensional models</subject><subject>Regularization</subject><subject>Signal processing</subject><subject>Signal-To-Noise Ratio</subject><subject>Singular value decomposition</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Support Vector Regression</subject><subject>Two dimensional models</subject><issn>1475-925X</issn><issn>1475-925X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl2L1DAUhoso7rr6A7yRgjd60TVpk7a5EYbFj4EBYVXwLpwmp52MbVKTdtX99abOum5FQr5OnvOSnLxJ8pSSc0rr8lWguSjqjNDYORXZ9b3klLKKZyLnX-7fWZ8kj0I4EJITUoqHyUkuYrSo2WlyuUktfk9hHL0DtU8nl057TI2dPCjw2oCKmyv0AdOIND0O6RyM7dIdjD0oAzbVJkxgFaZf0VvsHycPWugDPrmZz5LPb998unif7T68215sdpnigk1Z3tCGNTlHZLQAznStBVclrVTBcLmdUA1WtRIlqVgBhOlcMNG0LSOEMODFWbI96moHBzl6M4D_KR0Y-TvgfCfBT0b1KCtklY6D1qxiDFsBDHnNRSV0W7QUotbro9Y4NwNqhcv7-5Xo-sSavezclSwJpSynUeDFjYB332YMkxxMUNj3YNHNQeaEV3XJi1JE9Pk_6MHN3sZSRaqinNCyzP9SHcQHGNu65UcWUbnhrBSEFnyhzv9DxaZxMMpZbE2MrxJerhIiM-GPqYM5BLn9eLlm6ZFV3oXgsb2tByVyMaA8GlBGA8rFgPI65jy7W8jbjD-OK34BaorUQQ</recordid><startdate>20180620</startdate><enddate>20180620</enddate><creator>Caulier-Cisterna, Raúl</creator><creator>Muñoz-Romero, Sergio</creator><creator>Sanromán-Junquera, Margarita</creator><creator>García-Alberola, Arcadi</creator><creator>Rojo-Álvarez, José Luis</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0125-485X</orcidid></search><sort><creationdate>20180620</creationdate><title>A new approach to the intracardiac inverse problem using Laplacian distance kernel</title><author>Caulier-Cisterna, Raúl ; Muñoz-Romero, Sergio ; Sanromán-Junquera, Margarita ; García-Alberola, Arcadi ; Rojo-Álvarez, José Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Computer simulation</topic><topic>Diagnosis</topic><topic>Dual Signal Model</topic><topic>Electrocardiography</topic><topic>Electroencephalography</topic><topic>Electrophysiological Phenomena</topic><topic>Electrophysiology</topic><topic>Heart - physiology</topic><topic>Inverse problem</topic><topic>Inverse problems</topic><topic>Laplacian</topic><topic>Least-Squares Analysis</topic><topic>Low pass filters</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Mercer’s kernel</topic><topic>Models, Cardiovascular</topic><topic>Noise sensitivity</topic><topic>One dimensional models</topic><topic>Regularization</topic><topic>Signal processing</topic><topic>Signal-To-Noise Ratio</topic><topic>Singular value decomposition</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Support Vector Regression</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caulier-Cisterna, Raúl</creatorcontrib><creatorcontrib>Muñoz-Romero, Sergio</creatorcontrib><creatorcontrib>Sanromán-Junquera, Margarita</creatorcontrib><creatorcontrib>García-Alberola, Arcadi</creatorcontrib><creatorcontrib>Rojo-Álvarez, José Luis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomedical engineering online</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caulier-Cisterna, Raúl</au><au>Muñoz-Romero, Sergio</au><au>Sanromán-Junquera, Margarita</au><au>García-Alberola, Arcadi</au><au>Rojo-Álvarez, José Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to the intracardiac inverse problem using Laplacian distance kernel</atitle><jtitle>Biomedical engineering online</jtitle><addtitle>Biomed Eng Online</addtitle><date>2018-06-20</date><risdate>2018</risdate><volume>17</volume><issue>1</issue><spage>86</spage><epage>86</epage><pages>86-86</pages><artnum>86</artnum><issn>1475-925X</issn><eissn>1475-925X</eissn><abstract>The inverse problem in electrophysiology consists of the accurate estimation of the intracardiac electrical sources from a reduced set of electrodes at short distances and from outside the heart. This estimation can provide an image with relevant knowledge on arrhythmia mechanisms for the clinical practice. Methods based on truncated singular value decomposition (TSVD) and regularized least squares require a matrix inversion, which limits their resolution due to the unavoidable low-pass filter effect of the Tikhonov regularization techniques. We propose to use, for the first time, a Mercer's kernel given by the Laplacian of the distance in the quasielectrostatic field equations, hence providing a Support Vector Regression (SVR) formulation by following the principles of the Dual Signal Model (DSM) principles for creating kernel algorithms. Simulations in one- and two-dimensional models show the performance of our Laplacian distance kernel technique versus several conventional methods. Firstly, the one-dimensional model is adjusted for yielding recorded electrograms, similar to the ones that are usually observed in electrophysiological studies, and suitable strategy is designed for the free-parameter search. Secondly, simulations both in one- and two-dimensional models show larger noise sensitivity in the estimated transfer matrix than in the observation measurements, and DSM-SVR is shown to be more robust to noisy transfer matrix than TSVD. These results suggest that our proposed DSM-SVR with Laplacian distance kernel can be an efficient alternative to improve the resolution in current and emerging intracardiac imaging systems.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>29925384</pmid><doi>10.1186/s12938-018-0519-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0125-485X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-925X
ispartof Biomedical engineering online, 2018-06, Vol.17 (1), p.86-86, Article 86
issn 1475-925X
1475-925X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7e47d7e4dd4744ef9a4e585979df3f1a
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Arrhythmia
Computer simulation
Diagnosis
Dual Signal Model
Electrocardiography
Electroencephalography
Electrophysiological Phenomena
Electrophysiology
Heart - physiology
Inverse problem
Inverse problems
Laplacian
Least-Squares Analysis
Low pass filters
Medical imaging
Medical imaging equipment
Mercer’s kernel
Models, Cardiovascular
Noise sensitivity
One dimensional models
Regularization
Signal processing
Signal-To-Noise Ratio
Singular value decomposition
Support Vector Machine
Support vector machines
Support Vector Regression
Two dimensional models
title A new approach to the intracardiac inverse problem using Laplacian distance kernel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20the%20intracardiac%20inverse%20problem%20using%20Laplacian%20distance%20kernel&rft.jtitle=Biomedical%20engineering%20online&rft.au=Caulier-Cisterna,%20Ra%C3%BAl&rft.date=2018-06-20&rft.volume=17&rft.issue=1&rft.spage=86&rft.epage=86&rft.pages=86-86&rft.artnum=86&rft.issn=1475-925X&rft.eissn=1475-925X&rft_id=info:doi/10.1186/s12938-018-0519-z&rft_dat=%3Cgale_doaj_%3EA546901352%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-2b1b4b25ee413a54d8d95c617c34e25389cbe78c960743a04d2949bff40004a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071501662&rft_id=info:pmid/29925384&rft_galeid=A546901352&rfr_iscdi=true