Loading…

Emerging Artificial Intelligence-Empowered mHealth: Scoping Review

Artificial intelligence (AI) has revolutionized health care delivery in recent years. There is an increase in research for advanced AI techniques, such as deep learning, to build predictive models for the early detection of diseases. Such predictive models leverage mobile health (mHealth) data from...

Full description

Saved in:
Bibliographic Details
Published in:JMIR mHealth and uHealth 2022-06, Vol.10 (6), p.e35053-e35053
Main Authors: Bhatt, Paras, Liu, Jia, Gong, Yanmin, Wang, Jing, Guo, Yuanxiong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial intelligence (AI) has revolutionized health care delivery in recent years. There is an increase in research for advanced AI techniques, such as deep learning, to build predictive models for the early detection of diseases. Such predictive models leverage mobile health (mHealth) data from wearable sensors and smartphones to discover novel ways for detecting and managing chronic diseases and mental health conditions. Currently, little is known about the use of AI-powered mHealth (AIM) settings. Therefore, this scoping review aims to map current research on the emerging use of AIM for managing diseases and promoting health. Our objective is to synthesize research in AIM models that have increasingly been used for health care delivery in the last 2 years. Using Arksey and O'Malley's 5-point framework for conducting scoping reviews, we reviewed AIM literature from the past 2 years in the fields of biomedical technology, AI, and information systems. We searched 3 databases, PubsOnline at INFORMS, e-journal archive at MIS Quarterly, and Association for Computing Machinery (ACM) Digital Library using keywords such as "mobile healthcare," "wearable medical sensors," "smartphones", and "AI." We included AIM articles and excluded technical articles focused only on AI models. We also used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) technique for identifying articles that represent a comprehensive view of current research in the AIM domain. We screened 108 articles focusing on developing AIM models for ensuring better health care delivery, detecting diseases early, and diagnosing chronic health conditions, and 37 articles were eligible for inclusion, with 31 of the 37 articles being published last year (76%). Of the included articles, 9 studied AI models to detect serious mental health issues, such as depression and suicidal tendencies, and chronic health conditions, such as sleep apnea and diabetes. Several articles discussed the application of AIM models for remote patient monitoring and disease management. The considered primary health concerns belonged to 3 categories: mental health, physical health, and health promotion and wellness. Moreover, 14 of the 37 articles used AIM applications to research physical health, representing 38% of the total studies. Finally, 28 out of the 37 (76%) studies used proprietary data sets rather than public data sets. We found a lack of research in addressing chronic mental health issues
ISSN:2291-5222
2291-5222
DOI:10.2196/35053