Loading…

Comparison of EV characterization by commercial high‐sensitivity flow cytometers and a custom single‐molecule flow cytometer

High‐sensitivity flow cytometers have been developed for multi‐parameter characterization of single extracellular vesicles (EVs), but performance varies among instruments and calibration methods. Here we compare the characterization of identical (split) EV samples derived from human colorectal cance...

Full description

Saved in:
Bibliographic Details
Published in:Journal of extracellular vesicles 2024-08, Vol.13 (8), p.e12498-n/a
Main Authors: Kim, James, Xu, Shihan, Jung, Seung‐Ryoung, Nguyen, Alya, Cheng, Yuanhua, Zhao, Mengxia, Fujimoto, Bryant S., Nelson, Wyatt, Schiro, Perry, Franklin, Jeffrey L., Higginbotham, James N., Coffey, Robert J., Shi, Min, Vojtech, Lucia N., Hladik, Florian, Tewari, Muneesh, Tigges, John, Ghiran, Ionita, Jovanovic‐Talisman, Tijana, Laurent, Louise C., Das, Saumya, Gololobova, Olesia, Witwer, Kenneth W., Xu, Tuoye, Charest, Al, Jensen, Kendall Van Keuren, Raffai, Robert L., Jones, Jennifer C., Welsh, Joshua A., Nolan, John P., Chiu, Daniel T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3408-ab6d2ae164a2c9c35a837607c5f44519d047c65667327dc9f1c6acb5584a2ef83
container_end_page n/a
container_issue 8
container_start_page e12498
container_title Journal of extracellular vesicles
container_volume 13
creator Kim, James
Xu, Shihan
Jung, Seung‐Ryoung
Nguyen, Alya
Cheng, Yuanhua
Zhao, Mengxia
Fujimoto, Bryant S.
Nelson, Wyatt
Schiro, Perry
Franklin, Jeffrey L.
Higginbotham, James N.
Coffey, Robert J.
Shi, Min
Vojtech, Lucia N.
Hladik, Florian
Tewari, Muneesh
Tigges, John
Ghiran, Ionita
Jovanovic‐Talisman, Tijana
Laurent, Louise C.
Das, Saumya
Gololobova, Olesia
Witwer, Kenneth W.
Xu, Tuoye
Charest, Al
Jensen, Kendall Van Keuren
Raffai, Robert L.
Jones, Jennifer C.
Welsh, Joshua A.
Nolan, John P.
Chiu, Daniel T.
description High‐sensitivity flow cytometers have been developed for multi‐parameter characterization of single extracellular vesicles (EVs), but performance varies among instruments and calibration methods. Here we compare the characterization of identical (split) EV samples derived from human colorectal cancer (DiFi) cells by three high‐sensitivity flow cytometers, two commercial instruments, CytoFLEX/CellStream, and a custom single‐molecule flow cytometer (SMFC). DiFi EVs were stained with the membrane dye di‐8‐ANEPPS and with PE‐conjugated anti‐EGFR or anti‐tetraspanin (CD9/CD63/CD81) antibodies for estimation of EV size and surface protein copy numbers. The limits of detection (LODs) for immunofluorescence and vesicle size based on calibration using cross‐calibrated, hard‐dyed beads were ∼10 PE/∼80 nm EV diameter for CytoFLEX and ∼10 PEs/∼67 nm for CellStream. For the SMFC, the LOD for immunofluorescence was 1 PE and ≤ 35 nm for size. The population of EVs detected by each system (di‐8‐ANEPPS+/PE+ particles) differed widely depending on the LOD of the system; for example, CellStream/CytoFLEX detected only 5.7% and 1.5% of the tetraspanin‐labelled EVs detected by SMFC, respectively, and median EV diameter and antibody copy numbers were much larger for CellStream/CytoFLEX than for SMFC as measured and validated using super‐resolution/single‐molecule TIRF microscopy. To obtain a dataset representing a common EV population analysed by all three platforms, we filtered out SMFC and CellStream measurements for EVs below the CytoFLEX LODs as determined by bead calibration (10 PE/80 nm). The inter‐platform agreement using this filtered dataset was significantly better than for the unfiltered dataset, but even better concordance between results was obtained by applying higher cutoffs (21 PE/120 nm) determined by threshold analysis using the SMFC data. The results demonstrate the impact of specifying LODs to define the EV population analysed on inter‐instrument reproducibility in EV flow cytometry studies, and the utility of threshold analysis of SMFC data for providing semi‐quantitative LOD values for other flow cytometers.
doi_str_mv 10.1002/jev2.12498
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7ea6b425e4f14da5b65bb5379df9a944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7ea6b425e4f14da5b65bb5379df9a944</doaj_id><sourcerecordid>3092871701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3408-ab6d2ae164a2c9c35a837607c5f44519d047c65667327dc9f1c6acb5584a2ef83</originalsourceid><addsrcrecordid>eNp9ks9uEzEQh1cIRKvSCw-AfERIKbbXf9YnhKIARZW4QK_WrHc2ceRdB3uTKj31EXhGngS3KVXLAV9s_fzNN5Y8VfWa0TNGKX-_xh0_Y1yY5ll1zClls5rq5vmj81F1mvOalmUEk415WR3VhgkqlD6ubuZx2EDyOY4k9mRxSdwKErgJk7-GyZe43RMXhwGT8xDIyi9Xv29-ZRyzn_zOT3vSh3hF3H6KA5ayTGDsCBC3zSUh2Y_LgKViiAHdNuA_-KvqRQ8h4-n9flL9-LT4Pv8yu_j2-Xz-8WLmakGbGbSq44BMCeDOuFpCU2tFtZO9EJKZjgrtlFRK11x3zvTMKXCtlE0pwL6pT6rzg7eLsLab5AdIexvB27sgpqWFNHkX0GoE1QouUfRMdCBbJdtW1tp0vQEjRHF9OLg223bAzuE4JQhPpE9vRr-yy7izjNWcN4oWw9t7Q4o_t5gnO_jsMAQYMW6zranhjWaasoK-O6AuxZwT9g99GLW3I2BvR8DejUCB3zx-2QP698MLwA7AlQ-4_4_Kfl1c8oP0D0FOwLs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092871701</pqid></control><display><type>article</type><title>Comparison of EV characterization by commercial high‐sensitivity flow cytometers and a custom single‐molecule flow cytometer</title><source>Wiley-Blackwell Open Access Collection</source><source>PubMed Central</source><creator>Kim, James ; Xu, Shihan ; Jung, Seung‐Ryoung ; Nguyen, Alya ; Cheng, Yuanhua ; Zhao, Mengxia ; Fujimoto, Bryant S. ; Nelson, Wyatt ; Schiro, Perry ; Franklin, Jeffrey L. ; Higginbotham, James N. ; Coffey, Robert J. ; Shi, Min ; Vojtech, Lucia N. ; Hladik, Florian ; Tewari, Muneesh ; Tigges, John ; Ghiran, Ionita ; Jovanovic‐Talisman, Tijana ; Laurent, Louise C. ; Das, Saumya ; Gololobova, Olesia ; Witwer, Kenneth W. ; Xu, Tuoye ; Charest, Al ; Jensen, Kendall Van Keuren ; Raffai, Robert L. ; Jones, Jennifer C. ; Welsh, Joshua A. ; Nolan, John P. ; Chiu, Daniel T.</creator><creatorcontrib>Kim, James ; Xu, Shihan ; Jung, Seung‐Ryoung ; Nguyen, Alya ; Cheng, Yuanhua ; Zhao, Mengxia ; Fujimoto, Bryant S. ; Nelson, Wyatt ; Schiro, Perry ; Franklin, Jeffrey L. ; Higginbotham, James N. ; Coffey, Robert J. ; Shi, Min ; Vojtech, Lucia N. ; Hladik, Florian ; Tewari, Muneesh ; Tigges, John ; Ghiran, Ionita ; Jovanovic‐Talisman, Tijana ; Laurent, Louise C. ; Das, Saumya ; Gololobova, Olesia ; Witwer, Kenneth W. ; Xu, Tuoye ; Charest, Al ; Jensen, Kendall Van Keuren ; Raffai, Robert L. ; Jones, Jennifer C. ; Welsh, Joshua A. ; Nolan, John P. ; Chiu, Daniel T.</creatorcontrib><description>High‐sensitivity flow cytometers have been developed for multi‐parameter characterization of single extracellular vesicles (EVs), but performance varies among instruments and calibration methods. Here we compare the characterization of identical (split) EV samples derived from human colorectal cancer (DiFi) cells by three high‐sensitivity flow cytometers, two commercial instruments, CytoFLEX/CellStream, and a custom single‐molecule flow cytometer (SMFC). DiFi EVs were stained with the membrane dye di‐8‐ANEPPS and with PE‐conjugated anti‐EGFR or anti‐tetraspanin (CD9/CD63/CD81) antibodies for estimation of EV size and surface protein copy numbers. The limits of detection (LODs) for immunofluorescence and vesicle size based on calibration using cross‐calibrated, hard‐dyed beads were ∼10 PE/∼80 nm EV diameter for CytoFLEX and ∼10 PEs/∼67 nm for CellStream. For the SMFC, the LOD for immunofluorescence was 1 PE and ≤ 35 nm for size. The population of EVs detected by each system (di‐8‐ANEPPS+/PE+ particles) differed widely depending on the LOD of the system; for example, CellStream/CytoFLEX detected only 5.7% and 1.5% of the tetraspanin‐labelled EVs detected by SMFC, respectively, and median EV diameter and antibody copy numbers were much larger for CellStream/CytoFLEX than for SMFC as measured and validated using super‐resolution/single‐molecule TIRF microscopy. To obtain a dataset representing a common EV population analysed by all three platforms, we filtered out SMFC and CellStream measurements for EVs below the CytoFLEX LODs as determined by bead calibration (10 PE/80 nm). The inter‐platform agreement using this filtered dataset was significantly better than for the unfiltered dataset, but even better concordance between results was obtained by applying higher cutoffs (21 PE/120 nm) determined by threshold analysis using the SMFC data. The results demonstrate the impact of specifying LODs to define the EV population analysed on inter‐instrument reproducibility in EV flow cytometry studies, and the utility of threshold analysis of SMFC data for providing semi‐quantitative LOD values for other flow cytometers.</description><identifier>ISSN: 2001-3078</identifier><identifier>EISSN: 2001-3078</identifier><identifier>DOI: 10.1002/jev2.12498</identifier><identifier>PMID: 39140467</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>Cell Line, Tumor ; CellStream ; Colorectal Neoplasms - diagnosis ; CytoFLEX ; equivalent reference fluorophore calibration beads ; extracellular vesicles ; Extracellular Vesicles - metabolism ; Flow Cytometry - instrumentation ; Flow Cytometry - methods ; Humans ; limit of detection ; Single Molecule Imaging - instrumentation ; Single Molecule Imaging - methods ; single‐molecule flow cytometry</subject><ispartof>Journal of extracellular vesicles, 2024-08, Vol.13 (8), p.e12498-n/a</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.</rights><rights>2024 The Author(s). Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3408-ab6d2ae164a2c9c35a837607c5f44519d047c65667327dc9f1c6acb5584a2ef83</cites><orcidid>0000-0002-2180-3844 ; 0000-0002-1097-9756 ; 0000-0002-0392-268X ; 0000-0001-6655-3298 ; 0000-0002-5442-3055 ; 0000-0003-1664-4233 ; 0000-0002-6990-509X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322860/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322860/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,27905,27906,46033,46457,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39140467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, James</creatorcontrib><creatorcontrib>Xu, Shihan</creatorcontrib><creatorcontrib>Jung, Seung‐Ryoung</creatorcontrib><creatorcontrib>Nguyen, Alya</creatorcontrib><creatorcontrib>Cheng, Yuanhua</creatorcontrib><creatorcontrib>Zhao, Mengxia</creatorcontrib><creatorcontrib>Fujimoto, Bryant S.</creatorcontrib><creatorcontrib>Nelson, Wyatt</creatorcontrib><creatorcontrib>Schiro, Perry</creatorcontrib><creatorcontrib>Franklin, Jeffrey L.</creatorcontrib><creatorcontrib>Higginbotham, James N.</creatorcontrib><creatorcontrib>Coffey, Robert J.</creatorcontrib><creatorcontrib>Shi, Min</creatorcontrib><creatorcontrib>Vojtech, Lucia N.</creatorcontrib><creatorcontrib>Hladik, Florian</creatorcontrib><creatorcontrib>Tewari, Muneesh</creatorcontrib><creatorcontrib>Tigges, John</creatorcontrib><creatorcontrib>Ghiran, Ionita</creatorcontrib><creatorcontrib>Jovanovic‐Talisman, Tijana</creatorcontrib><creatorcontrib>Laurent, Louise C.</creatorcontrib><creatorcontrib>Das, Saumya</creatorcontrib><creatorcontrib>Gololobova, Olesia</creatorcontrib><creatorcontrib>Witwer, Kenneth W.</creatorcontrib><creatorcontrib>Xu, Tuoye</creatorcontrib><creatorcontrib>Charest, Al</creatorcontrib><creatorcontrib>Jensen, Kendall Van Keuren</creatorcontrib><creatorcontrib>Raffai, Robert L.</creatorcontrib><creatorcontrib>Jones, Jennifer C.</creatorcontrib><creatorcontrib>Welsh, Joshua A.</creatorcontrib><creatorcontrib>Nolan, John P.</creatorcontrib><creatorcontrib>Chiu, Daniel T.</creatorcontrib><title>Comparison of EV characterization by commercial high‐sensitivity flow cytometers and a custom single‐molecule flow cytometer</title><title>Journal of extracellular vesicles</title><addtitle>J Extracell Vesicles</addtitle><description>High‐sensitivity flow cytometers have been developed for multi‐parameter characterization of single extracellular vesicles (EVs), but performance varies among instruments and calibration methods. Here we compare the characterization of identical (split) EV samples derived from human colorectal cancer (DiFi) cells by three high‐sensitivity flow cytometers, two commercial instruments, CytoFLEX/CellStream, and a custom single‐molecule flow cytometer (SMFC). DiFi EVs were stained with the membrane dye di‐8‐ANEPPS and with PE‐conjugated anti‐EGFR or anti‐tetraspanin (CD9/CD63/CD81) antibodies for estimation of EV size and surface protein copy numbers. The limits of detection (LODs) for immunofluorescence and vesicle size based on calibration using cross‐calibrated, hard‐dyed beads were ∼10 PE/∼80 nm EV diameter for CytoFLEX and ∼10 PEs/∼67 nm for CellStream. For the SMFC, the LOD for immunofluorescence was 1 PE and ≤ 35 nm for size. The population of EVs detected by each system (di‐8‐ANEPPS+/PE+ particles) differed widely depending on the LOD of the system; for example, CellStream/CytoFLEX detected only 5.7% and 1.5% of the tetraspanin‐labelled EVs detected by SMFC, respectively, and median EV diameter and antibody copy numbers were much larger for CellStream/CytoFLEX than for SMFC as measured and validated using super‐resolution/single‐molecule TIRF microscopy. To obtain a dataset representing a common EV population analysed by all three platforms, we filtered out SMFC and CellStream measurements for EVs below the CytoFLEX LODs as determined by bead calibration (10 PE/80 nm). The inter‐platform agreement using this filtered dataset was significantly better than for the unfiltered dataset, but even better concordance between results was obtained by applying higher cutoffs (21 PE/120 nm) determined by threshold analysis using the SMFC data. The results demonstrate the impact of specifying LODs to define the EV population analysed on inter‐instrument reproducibility in EV flow cytometry studies, and the utility of threshold analysis of SMFC data for providing semi‐quantitative LOD values for other flow cytometers.</description><subject>Cell Line, Tumor</subject><subject>CellStream</subject><subject>Colorectal Neoplasms - diagnosis</subject><subject>CytoFLEX</subject><subject>equivalent reference fluorophore calibration beads</subject><subject>extracellular vesicles</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Flow Cytometry - instrumentation</subject><subject>Flow Cytometry - methods</subject><subject>Humans</subject><subject>limit of detection</subject><subject>Single Molecule Imaging - instrumentation</subject><subject>Single Molecule Imaging - methods</subject><subject>single‐molecule flow cytometry</subject><issn>2001-3078</issn><issn>2001-3078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9uEzEQh1cIRKvSCw-AfERIKbbXf9YnhKIARZW4QK_WrHc2ceRdB3uTKj31EXhGngS3KVXLAV9s_fzNN5Y8VfWa0TNGKX-_xh0_Y1yY5ll1zClls5rq5vmj81F1mvOalmUEk415WR3VhgkqlD6ubuZx2EDyOY4k9mRxSdwKErgJk7-GyZe43RMXhwGT8xDIyi9Xv29-ZRyzn_zOT3vSh3hF3H6KA5ayTGDsCBC3zSUh2Y_LgKViiAHdNuA_-KvqRQ8h4-n9flL9-LT4Pv8yu_j2-Xz-8WLmakGbGbSq44BMCeDOuFpCU2tFtZO9EJKZjgrtlFRK11x3zvTMKXCtlE0pwL6pT6rzg7eLsLab5AdIexvB27sgpqWFNHkX0GoE1QouUfRMdCBbJdtW1tp0vQEjRHF9OLg223bAzuE4JQhPpE9vRr-yy7izjNWcN4oWw9t7Q4o_t5gnO_jsMAQYMW6zranhjWaasoK-O6AuxZwT9g99GLW3I2BvR8DejUCB3zx-2QP698MLwA7AlQ-4_4_Kfl1c8oP0D0FOwLs</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Kim, James</creator><creator>Xu, Shihan</creator><creator>Jung, Seung‐Ryoung</creator><creator>Nguyen, Alya</creator><creator>Cheng, Yuanhua</creator><creator>Zhao, Mengxia</creator><creator>Fujimoto, Bryant S.</creator><creator>Nelson, Wyatt</creator><creator>Schiro, Perry</creator><creator>Franklin, Jeffrey L.</creator><creator>Higginbotham, James N.</creator><creator>Coffey, Robert J.</creator><creator>Shi, Min</creator><creator>Vojtech, Lucia N.</creator><creator>Hladik, Florian</creator><creator>Tewari, Muneesh</creator><creator>Tigges, John</creator><creator>Ghiran, Ionita</creator><creator>Jovanovic‐Talisman, Tijana</creator><creator>Laurent, Louise C.</creator><creator>Das, Saumya</creator><creator>Gololobova, Olesia</creator><creator>Witwer, Kenneth W.</creator><creator>Xu, Tuoye</creator><creator>Charest, Al</creator><creator>Jensen, Kendall Van Keuren</creator><creator>Raffai, Robert L.</creator><creator>Jones, Jennifer C.</creator><creator>Welsh, Joshua A.</creator><creator>Nolan, John P.</creator><creator>Chiu, Daniel T.</creator><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2180-3844</orcidid><orcidid>https://orcid.org/0000-0002-1097-9756</orcidid><orcidid>https://orcid.org/0000-0002-0392-268X</orcidid><orcidid>https://orcid.org/0000-0001-6655-3298</orcidid><orcidid>https://orcid.org/0000-0002-5442-3055</orcidid><orcidid>https://orcid.org/0000-0003-1664-4233</orcidid><orcidid>https://orcid.org/0000-0002-6990-509X</orcidid></search><sort><creationdate>202408</creationdate><title>Comparison of EV characterization by commercial high‐sensitivity flow cytometers and a custom single‐molecule flow cytometer</title><author>Kim, James ; Xu, Shihan ; Jung, Seung‐Ryoung ; Nguyen, Alya ; Cheng, Yuanhua ; Zhao, Mengxia ; Fujimoto, Bryant S. ; Nelson, Wyatt ; Schiro, Perry ; Franklin, Jeffrey L. ; Higginbotham, James N. ; Coffey, Robert J. ; Shi, Min ; Vojtech, Lucia N. ; Hladik, Florian ; Tewari, Muneesh ; Tigges, John ; Ghiran, Ionita ; Jovanovic‐Talisman, Tijana ; Laurent, Louise C. ; Das, Saumya ; Gololobova, Olesia ; Witwer, Kenneth W. ; Xu, Tuoye ; Charest, Al ; Jensen, Kendall Van Keuren ; Raffai, Robert L. ; Jones, Jennifer C. ; Welsh, Joshua A. ; Nolan, John P. ; Chiu, Daniel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3408-ab6d2ae164a2c9c35a837607c5f44519d047c65667327dc9f1c6acb5584a2ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell Line, Tumor</topic><topic>CellStream</topic><topic>Colorectal Neoplasms - diagnosis</topic><topic>CytoFLEX</topic><topic>equivalent reference fluorophore calibration beads</topic><topic>extracellular vesicles</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Flow Cytometry - instrumentation</topic><topic>Flow Cytometry - methods</topic><topic>Humans</topic><topic>limit of detection</topic><topic>Single Molecule Imaging - instrumentation</topic><topic>Single Molecule Imaging - methods</topic><topic>single‐molecule flow cytometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, James</creatorcontrib><creatorcontrib>Xu, Shihan</creatorcontrib><creatorcontrib>Jung, Seung‐Ryoung</creatorcontrib><creatorcontrib>Nguyen, Alya</creatorcontrib><creatorcontrib>Cheng, Yuanhua</creatorcontrib><creatorcontrib>Zhao, Mengxia</creatorcontrib><creatorcontrib>Fujimoto, Bryant S.</creatorcontrib><creatorcontrib>Nelson, Wyatt</creatorcontrib><creatorcontrib>Schiro, Perry</creatorcontrib><creatorcontrib>Franklin, Jeffrey L.</creatorcontrib><creatorcontrib>Higginbotham, James N.</creatorcontrib><creatorcontrib>Coffey, Robert J.</creatorcontrib><creatorcontrib>Shi, Min</creatorcontrib><creatorcontrib>Vojtech, Lucia N.</creatorcontrib><creatorcontrib>Hladik, Florian</creatorcontrib><creatorcontrib>Tewari, Muneesh</creatorcontrib><creatorcontrib>Tigges, John</creatorcontrib><creatorcontrib>Ghiran, Ionita</creatorcontrib><creatorcontrib>Jovanovic‐Talisman, Tijana</creatorcontrib><creatorcontrib>Laurent, Louise C.</creatorcontrib><creatorcontrib>Das, Saumya</creatorcontrib><creatorcontrib>Gololobova, Olesia</creatorcontrib><creatorcontrib>Witwer, Kenneth W.</creatorcontrib><creatorcontrib>Xu, Tuoye</creatorcontrib><creatorcontrib>Charest, Al</creatorcontrib><creatorcontrib>Jensen, Kendall Van Keuren</creatorcontrib><creatorcontrib>Raffai, Robert L.</creatorcontrib><creatorcontrib>Jones, Jennifer C.</creatorcontrib><creatorcontrib>Welsh, Joshua A.</creatorcontrib><creatorcontrib>Nolan, John P.</creatorcontrib><creatorcontrib>Chiu, Daniel T.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of extracellular vesicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, James</au><au>Xu, Shihan</au><au>Jung, Seung‐Ryoung</au><au>Nguyen, Alya</au><au>Cheng, Yuanhua</au><au>Zhao, Mengxia</au><au>Fujimoto, Bryant S.</au><au>Nelson, Wyatt</au><au>Schiro, Perry</au><au>Franklin, Jeffrey L.</au><au>Higginbotham, James N.</au><au>Coffey, Robert J.</au><au>Shi, Min</au><au>Vojtech, Lucia N.</au><au>Hladik, Florian</au><au>Tewari, Muneesh</au><au>Tigges, John</au><au>Ghiran, Ionita</au><au>Jovanovic‐Talisman, Tijana</au><au>Laurent, Louise C.</au><au>Das, Saumya</au><au>Gololobova, Olesia</au><au>Witwer, Kenneth W.</au><au>Xu, Tuoye</au><au>Charest, Al</au><au>Jensen, Kendall Van Keuren</au><au>Raffai, Robert L.</au><au>Jones, Jennifer C.</au><au>Welsh, Joshua A.</au><au>Nolan, John P.</au><au>Chiu, Daniel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of EV characterization by commercial high‐sensitivity flow cytometers and a custom single‐molecule flow cytometer</atitle><jtitle>Journal of extracellular vesicles</jtitle><addtitle>J Extracell Vesicles</addtitle><date>2024-08</date><risdate>2024</risdate><volume>13</volume><issue>8</issue><spage>e12498</spage><epage>n/a</epage><pages>e12498-n/a</pages><issn>2001-3078</issn><eissn>2001-3078</eissn><abstract>High‐sensitivity flow cytometers have been developed for multi‐parameter characterization of single extracellular vesicles (EVs), but performance varies among instruments and calibration methods. Here we compare the characterization of identical (split) EV samples derived from human colorectal cancer (DiFi) cells by three high‐sensitivity flow cytometers, two commercial instruments, CytoFLEX/CellStream, and a custom single‐molecule flow cytometer (SMFC). DiFi EVs were stained with the membrane dye di‐8‐ANEPPS and with PE‐conjugated anti‐EGFR or anti‐tetraspanin (CD9/CD63/CD81) antibodies for estimation of EV size and surface protein copy numbers. The limits of detection (LODs) for immunofluorescence and vesicle size based on calibration using cross‐calibrated, hard‐dyed beads were ∼10 PE/∼80 nm EV diameter for CytoFLEX and ∼10 PEs/∼67 nm for CellStream. For the SMFC, the LOD for immunofluorescence was 1 PE and ≤ 35 nm for size. The population of EVs detected by each system (di‐8‐ANEPPS+/PE+ particles) differed widely depending on the LOD of the system; for example, CellStream/CytoFLEX detected only 5.7% and 1.5% of the tetraspanin‐labelled EVs detected by SMFC, respectively, and median EV diameter and antibody copy numbers were much larger for CellStream/CytoFLEX than for SMFC as measured and validated using super‐resolution/single‐molecule TIRF microscopy. To obtain a dataset representing a common EV population analysed by all three platforms, we filtered out SMFC and CellStream measurements for EVs below the CytoFLEX LODs as determined by bead calibration (10 PE/80 nm). The inter‐platform agreement using this filtered dataset was significantly better than for the unfiltered dataset, but even better concordance between results was obtained by applying higher cutoffs (21 PE/120 nm) determined by threshold analysis using the SMFC data. The results demonstrate the impact of specifying LODs to define the EV population analysed on inter‐instrument reproducibility in EV flow cytometry studies, and the utility of threshold analysis of SMFC data for providing semi‐quantitative LOD values for other flow cytometers.</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>39140467</pmid><doi>10.1002/jev2.12498</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2180-3844</orcidid><orcidid>https://orcid.org/0000-0002-1097-9756</orcidid><orcidid>https://orcid.org/0000-0002-0392-268X</orcidid><orcidid>https://orcid.org/0000-0001-6655-3298</orcidid><orcidid>https://orcid.org/0000-0002-5442-3055</orcidid><orcidid>https://orcid.org/0000-0003-1664-4233</orcidid><orcidid>https://orcid.org/0000-0002-6990-509X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2001-3078
ispartof Journal of extracellular vesicles, 2024-08, Vol.13 (8), p.e12498-n/a
issn 2001-3078
2001-3078
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7ea6b425e4f14da5b65bb5379df9a944
source Wiley-Blackwell Open Access Collection; PubMed Central
subjects Cell Line, Tumor
CellStream
Colorectal Neoplasms - diagnosis
CytoFLEX
equivalent reference fluorophore calibration beads
extracellular vesicles
Extracellular Vesicles - metabolism
Flow Cytometry - instrumentation
Flow Cytometry - methods
Humans
limit of detection
Single Molecule Imaging - instrumentation
Single Molecule Imaging - methods
single‐molecule flow cytometry
title Comparison of EV characterization by commercial high‐sensitivity flow cytometers and a custom single‐molecule flow cytometer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20EV%20characterization%20by%20commercial%20high%E2%80%90sensitivity%20flow%20cytometers%20and%20a%20custom%20single%E2%80%90molecule%20flow%20cytometer&rft.jtitle=Journal%20of%20extracellular%20vesicles&rft.au=Kim,%20James&rft.date=2024-08&rft.volume=13&rft.issue=8&rft.spage=e12498&rft.epage=n/a&rft.pages=e12498-n/a&rft.issn=2001-3078&rft.eissn=2001-3078&rft_id=info:doi/10.1002/jev2.12498&rft_dat=%3Cproquest_doaj_%3E3092871701%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3408-ab6d2ae164a2c9c35a837607c5f44519d047c65667327dc9f1c6acb5584a2ef83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092871701&rft_id=info:pmid/39140467&rfr_iscdi=true