Loading…
Empagliflozin Attenuates Myocardial Sodium and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats
Diabetes mellitus (DM) has significant effects on cardiac calcium (Ca ) and sodium (Na⁺) regulation. Clinical studies have shown that empagliflozin (Jardiance™) has cardiovascular benefits, however the mechanisms have not been fully elucidated. This study aimed to investigate whether empagliflozin m...
Saved in:
Published in: | International journal of molecular sciences 2019-04, Vol.20 (7), p.1680 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diabetes mellitus (DM) has significant effects on cardiac calcium (Ca
) and sodium (Na⁺) regulation. Clinical studies have shown that empagliflozin (Jardiance™) has cardiovascular benefits, however the mechanisms have not been fully elucidated. This study aimed to investigate whether empagliflozin modulates cardiac electrical activity as well as Ca
/Na⁺ homeostasis in DM cardiomyopathy. Electrocardiography, echocardiography, whole-cell patch-clamp, confocal microscopic examinations, and Western blot, were performed in the ventricular myocytes of control and streptozotocin-induced DM rats, with or without empagliflozin (10 mg/kg for 4 weeks). The results showed that the control and empagliflozin-treated DM rats had smaller left ventricular end-diastolic diameters and shorter QT intervals than the DM rats. In addition, the prolonged action potential duration in the DM rats was attenuated in the empagliflozin-treated DM rats. Moreover, the DM rats had smaller sarcoplasmic reticular Ca
contents, intracellular Ca
transients, L-type Ca
, reverse mode Na⁺-Ca
exchanger currents, lower protein expressions of sarcoplasmic reticulum ATPase, ryanodine receptor 2 (RyR2), but higher protein expressions of phosphorylated RyR2 at serine 2808 than the control and empagliflozin-treated DM rats. The incidence and frequency of Ca
sparks, cytosolic and mitochondrial reactive oxygen species, and late Na⁺ current and Na⁺/hydrogen-exchanger currents were greater in the DM rats than in the control and empagliflozin-treated DM rats. Empagliflozin significantly changed Ca
regulation, late Na⁺ and Na⁺/hydrogen-exchanger currents and electrophysiological characteristics in DM cardiomyopathy, which may contribute to its cardioprotective benefits in DM patients. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms20071680 |