Loading…
Non-supersymmetric heterotic strings on a circle
A bstract Motivated by a recent construction of non-supersymmetric AdS 3 , we revisit the O (16) × O (16) heterotic string compactified on a torus. The string one-loop potential energy has interesting dependence on the classical moduli; extrema of this potential include loci where the gauge symmetry...
Saved in:
Published in: | The journal of high energy physics 2024-12, Vol.2024 (12), p.82-59, Article 82 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-e7ccc59977de931f2fcd92fea58d22ea681e161ef7424b42b0016443ac331d1b3 |
container_end_page | 59 |
container_issue | 12 |
container_start_page | 82 |
container_title | The journal of high energy physics |
container_volume | 2024 |
creator | Fraiman, Bernardo Graña, Mariana Parra De Freitas, Héctor Sethi, Savdeep |
description | A
bstract
Motivated by a recent construction of non-supersymmetric AdS
3
, we revisit the
O
(16) ×
O
(16) heterotic string compactified on a torus. The string one-loop potential energy has interesting dependence on the classical moduli; extrema of this potential include loci where the gauge symmetry is maximally enhanced. Focusing on the case of a circle, we use lattice embeddings to find the maximal enhancement points together with their spectra of massless and tachyonic modes. We find an extended Dynkin diagram that encodes the global structure of the moduli space, as well as all symmetry enhancements and the loci where they occur. We find 107 points of maximal enhancement with 8 that are free of tachyons. The tachyon-free points each have positive cosmological constant. We determine the profile of the potential energy near each of these points and find that one is a maximum while three are saddle points. The remaining four live at the boundary of a tachyonic region in field space. In this way, we show that every point of maximal symmetry enhancement is unstable. We further find that the curvature of this stringy potential satisfies the de Sitter swampland conjecture. Finally, we discuss the implications for constructions of AdS
3
. |
doi_str_mv | 10.1007/JHEP12(2024)082 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7ec627b2bdc0482a829513c01be765b8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7ec627b2bdc0482a829513c01be765b8</doaj_id><sourcerecordid>3142732212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-e7ccc59977de931f2fcd92fea58d22ea681e161ef7424b42b0016443ac331d1b3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxSMEEqUws0ZigSHUd3biZERVoUUVMMBsOc6lpGrjYKdD_3tcgoCF6T50793TL4ougd0CY3LyOJ-9AF4jQ3HDcjyKRsCwSHIhi-M__Wl05v2aMUihYKOIPdk28buOnN9vt9S7xsTv1JOzfeh8mNuVj20b69g0zmzoPDqp9cbTxXcdR2_3s9fpPFk-Pyymd8vEcAl9QtIYkxaFlBUVHGqsTVVgTTrNK0TSWQ4EGVAtBYpSYBkSZUJwbTiHCko-jhaDb2X1WnWu2Wq3V1Y36mth3UppFzJuSEkyGcoSy8owkaPOsUiBGwYlySwt8-B1NXh1zn7syPdqbXeuDfEVB4GSIwKGq8lwZZz13lH98xWYOiBWA2J1QKwC4qBgg8J3B07kfn3_k3wC11V8Cg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142732212</pqid></control><display><type>article</type><title>Non-supersymmetric heterotic strings on a circle</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Fraiman, Bernardo ; Graña, Mariana ; Parra De Freitas, Héctor ; Sethi, Savdeep</creator><creatorcontrib>Fraiman, Bernardo ; Graña, Mariana ; Parra De Freitas, Héctor ; Sethi, Savdeep</creatorcontrib><description>A
bstract
Motivated by a recent construction of non-supersymmetric AdS
3
, we revisit the
O
(16) ×
O
(16) heterotic string compactified on a torus. The string one-loop potential energy has interesting dependence on the classical moduli; extrema of this potential include loci where the gauge symmetry is maximally enhanced. Focusing on the case of a circle, we use lattice embeddings to find the maximal enhancement points together with their spectra of massless and tachyonic modes. We find an extended Dynkin diagram that encodes the global structure of the moduli space, as well as all symmetry enhancements and the loci where they occur. We find 107 points of maximal enhancement with 8 that are free of tachyons. The tachyon-free points each have positive cosmological constant. We determine the profile of the potential energy near each of these points and find that one is a maximum while three are saddle points. The remaining four live at the boundary of a tachyonic region in field space. In this way, we show that every point of maximal symmetry enhancement is unstable. We further find that the curvature of this stringy potential satisfies the de Sitter swampland conjecture. Finally, we discuss the implications for constructions of AdS
3
.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP12(2024)082</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Cosmological constant ; Elementary Particles ; Lattice vibration ; Loci ; Physics ; Physics and Astronomy ; Potential energy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Saddle points ; String Theory ; Strings ; Superstring Vacua ; Superstrings and Heterotic Strings ; Supersymmetry ; Symmetry ; Tachyons ; Toruses</subject><ispartof>The journal of high energy physics, 2024-12, Vol.2024 (12), p.82-59, Article 82</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-e7ccc59977de931f2fcd92fea58d22ea681e161ef7424b42b0016443ac331d1b3</cites><orcidid>0000-0002-7520-680X ; 0000-0002-3331-5653 ; 0000-0002-0350-8323 ; 0000-0003-0259-4829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3142732212/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3142732212?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Fraiman, Bernardo</creatorcontrib><creatorcontrib>Graña, Mariana</creatorcontrib><creatorcontrib>Parra De Freitas, Héctor</creatorcontrib><creatorcontrib>Sethi, Savdeep</creatorcontrib><title>Non-supersymmetric heterotic strings on a circle</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
Motivated by a recent construction of non-supersymmetric AdS
3
, we revisit the
O
(16) ×
O
(16) heterotic string compactified on a torus. The string one-loop potential energy has interesting dependence on the classical moduli; extrema of this potential include loci where the gauge symmetry is maximally enhanced. Focusing on the case of a circle, we use lattice embeddings to find the maximal enhancement points together with their spectra of massless and tachyonic modes. We find an extended Dynkin diagram that encodes the global structure of the moduli space, as well as all symmetry enhancements and the loci where they occur. We find 107 points of maximal enhancement with 8 that are free of tachyons. The tachyon-free points each have positive cosmological constant. We determine the profile of the potential energy near each of these points and find that one is a maximum while three are saddle points. The remaining four live at the boundary of a tachyonic region in field space. In this way, we show that every point of maximal symmetry enhancement is unstable. We further find that the curvature of this stringy potential satisfies the de Sitter swampland conjecture. Finally, we discuss the implications for constructions of AdS
3
.</description><subject>Classical and Quantum Gravitation</subject><subject>Cosmological constant</subject><subject>Elementary Particles</subject><subject>Lattice vibration</subject><subject>Loci</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potential energy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Saddle points</subject><subject>String Theory</subject><subject>Strings</subject><subject>Superstring Vacua</subject><subject>Superstrings and Heterotic Strings</subject><subject>Supersymmetry</subject><subject>Symmetry</subject><subject>Tachyons</subject><subject>Toruses</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kL1PwzAQxSMEEqUws0ZigSHUd3biZERVoUUVMMBsOc6lpGrjYKdD_3tcgoCF6T50793TL4ougd0CY3LyOJ-9AF4jQ3HDcjyKRsCwSHIhi-M__Wl05v2aMUihYKOIPdk28buOnN9vt9S7xsTv1JOzfeh8mNuVj20b69g0zmzoPDqp9cbTxXcdR2_3s9fpPFk-Pyymd8vEcAl9QtIYkxaFlBUVHGqsTVVgTTrNK0TSWQ4EGVAtBYpSYBkSZUJwbTiHCko-jhaDb2X1WnWu2Wq3V1Y36mth3UppFzJuSEkyGcoSy8owkaPOsUiBGwYlySwt8-B1NXh1zn7syPdqbXeuDfEVB4GSIwKGq8lwZZz13lH98xWYOiBWA2J1QKwC4qBgg8J3B07kfn3_k3wC11V8Cg</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Fraiman, Bernardo</creator><creator>Graña, Mariana</creator><creator>Parra De Freitas, Héctor</creator><creator>Sethi, Savdeep</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7520-680X</orcidid><orcidid>https://orcid.org/0000-0002-3331-5653</orcidid><orcidid>https://orcid.org/0000-0002-0350-8323</orcidid><orcidid>https://orcid.org/0000-0003-0259-4829</orcidid></search><sort><creationdate>20241210</creationdate><title>Non-supersymmetric heterotic strings on a circle</title><author>Fraiman, Bernardo ; Graña, Mariana ; Parra De Freitas, Héctor ; Sethi, Savdeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-e7ccc59977de931f2fcd92fea58d22ea681e161ef7424b42b0016443ac331d1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Cosmological constant</topic><topic>Elementary Particles</topic><topic>Lattice vibration</topic><topic>Loci</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potential energy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Saddle points</topic><topic>String Theory</topic><topic>Strings</topic><topic>Superstring Vacua</topic><topic>Superstrings and Heterotic Strings</topic><topic>Supersymmetry</topic><topic>Symmetry</topic><topic>Tachyons</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraiman, Bernardo</creatorcontrib><creatorcontrib>Graña, Mariana</creatorcontrib><creatorcontrib>Parra De Freitas, Héctor</creatorcontrib><creatorcontrib>Sethi, Savdeep</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraiman, Bernardo</au><au>Graña, Mariana</au><au>Parra De Freitas, Héctor</au><au>Sethi, Savdeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-supersymmetric heterotic strings on a circle</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2024-12-10</date><risdate>2024</risdate><volume>2024</volume><issue>12</issue><spage>82</spage><epage>59</epage><pages>82-59</pages><artnum>82</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
Motivated by a recent construction of non-supersymmetric AdS
3
, we revisit the
O
(16) ×
O
(16) heterotic string compactified on a torus. The string one-loop potential energy has interesting dependence on the classical moduli; extrema of this potential include loci where the gauge symmetry is maximally enhanced. Focusing on the case of a circle, we use lattice embeddings to find the maximal enhancement points together with their spectra of massless and tachyonic modes. We find an extended Dynkin diagram that encodes the global structure of the moduli space, as well as all symmetry enhancements and the loci where they occur. We find 107 points of maximal enhancement with 8 that are free of tachyons. The tachyon-free points each have positive cosmological constant. We determine the profile of the potential energy near each of these points and find that one is a maximum while three are saddle points. The remaining four live at the boundary of a tachyonic region in field space. In this way, we show that every point of maximal symmetry enhancement is unstable. We further find that the curvature of this stringy potential satisfies the de Sitter swampland conjecture. Finally, we discuss the implications for constructions of AdS
3
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP12(2024)082</doi><tpages>59</tpages><orcidid>https://orcid.org/0000-0002-7520-680X</orcidid><orcidid>https://orcid.org/0000-0002-3331-5653</orcidid><orcidid>https://orcid.org/0000-0002-0350-8323</orcidid><orcidid>https://orcid.org/0000-0003-0259-4829</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2024-12, Vol.2024 (12), p.82-59, Article 82 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7ec627b2bdc0482a829513c01be765b8 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Classical and Quantum Gravitation Cosmological constant Elementary Particles Lattice vibration Loci Physics Physics and Astronomy Potential energy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Saddle points String Theory Strings Superstring Vacua Superstrings and Heterotic Strings Supersymmetry Symmetry Tachyons Toruses |
title | Non-supersymmetric heterotic strings on a circle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-supersymmetric%20heterotic%20strings%20on%20a%20circle&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Fraiman,%20Bernardo&rft.date=2024-12-10&rft.volume=2024&rft.issue=12&rft.spage=82&rft.epage=59&rft.pages=82-59&rft.artnum=82&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP12(2024)082&rft_dat=%3Cproquest_doaj_%3E3142732212%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-e7ccc59977de931f2fcd92fea58d22ea681e161ef7424b42b0016443ac331d1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142732212&rft_id=info:pmid/&rfr_iscdi=true |