Loading…
Dissociation and Self-Preservation of Gas Hydrates in Permafrost
Gases releasing from shallow permafrost above 150 m may contain methane produced by the dissociation of pore metastable gas hydrates, which can exist in permafrost due to self-preservation. In this study, special experiments were conducted to study the self-preservation kinetics. For this, sandy sam...
Saved in:
Published in: | Geosciences (Basel) 2018-12, Vol.8 (12), p.431 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gases releasing from shallow permafrost above 150 m may contain methane produced by the dissociation of pore metastable gas hydrates, which can exist in permafrost due to self-preservation. In this study, special experiments were conducted to study the self-preservation kinetics. For this, sandy samples from gas-bearing permafrost horizons in West Siberia were first saturated with methane hydrate and frozen and then exposed to gas pressure drop below the triple-phase equilibrium in the “gas–gas hydrate–ice” system. The experimental results showed that methane hydrate could survive for a long time in frozen soils at temperatures of −5 to −7 °C at below-equilibrium pressures, thus evidencing the self-preservation effect. The self-preservation of gas hydrates in permafrost depends on its temperature, salinity, ice content, and gas pressure. Prolonged preservation of metastable relict hydrates is possible in ice-rich sandy permafrost at −4 to −5 °C or colder, with a salinity of |
---|---|
ISSN: | 2076-3263 2076-3263 |
DOI: | 10.3390/geosciences8120431 |