Loading…

Numerical Model Study of Prototype Drop Tests on Cube and Cubipod® Concrete Armor Units Using the Combined Finite–Discrete Element Method

This paper aims to evaluate the structural strength of unreinforced concrete armor units (CAU), named Cubipod®, used on rubble-mound breakwaters and coastal structures, through a numerical methodology using the combined finite–discrete element method (FDEM). A numerical modeling methodology is devel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering 2021-05, Vol.9 (5), p.460
Main Authors: Scaravaglione, Giulio, Latham, John-Paul, Xiang, Jiansheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper aims to evaluate the structural strength of unreinforced concrete armor units (CAU), named Cubipod®, used on rubble-mound breakwaters and coastal structures, through a numerical methodology using the combined finite–discrete element method (FDEM). A numerical modeling methodology is developed to reproduce the results of an experimental examination published by Medina et al. (2011) of a free-fall drop test performed on a 15 t conventional Cubic block and a 16 t Cubipod® unit. The field results of the Cube drop tests were used to calibrate the model. The numerically simulated response to the Cubipod® test is then discussed in the context of a validation study. The calibration process and validation study provide insights into the sensitivity of breakage to tensile strength and collision angle, as well as a better understanding of the crushing and cracking damage of this unit under drop test impact conditions.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse9050460