Loading…
Biodegradable Magnesium Alloys for Personalised Temporary Implants
The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with...
Saved in:
Published in: | Journal of functional biomaterials 2023-07, Vol.14 (8), p.400 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-3b64863804d210260d53d6e4240339a2a0547dad06c235e5b704642251f0cce83 |
container_end_page | |
container_issue | 8 |
container_start_page | 400 |
container_title | Journal of functional biomaterials |
container_volume | 14 |
creator | Hendea, Radu Emil Raducanu, Doina Claver, Adrián García, José Antonio Cojocaru, Vasile Danut Nocivin, Anna Stanciu, Doina Serban, Nicolae Ivanescu, Steliana Trisca-Rusu, Corneliu Campian, Radu Septimiu |
description | The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD—X-ray diffraction, and SEM—scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60. |
doi_str_mv | 10.3390/jfb14080400 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7edae162fc4444fbb40cc2dfc1d289e0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762479600</galeid><doaj_id>oai_doaj_org_article_7edae162fc4444fbb40cc2dfc1d289e0</doaj_id><sourcerecordid>A762479600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-3b64863804d210260d53d6e4240339a2a0547dad06c235e5b704642251f0cce83</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpiT8QiQsS2jL-jHNC24qPlYrgUM6WY4-DV0m82AlS_z0OW0EXMT7YGr_zeMYzVfWSwBVjLbzd-45wUMABnlTnFJp2w1vFnj46n1WXOe-hmARFCX9enbFGUia5OK-ur0N02CfjTDdg_dn0E-awjPV2GOJ9rn1M9VdMOU5mCBldfYfjISaT7uvdeBjMNOcX1TNvhoyXD_tF9e3D-7ubT5vbLx93N9vbjeWNmjesk1xJVlJ1lACV4ARzEjnlUCox1IDgjTMOpKVMoOga4JJTKogHa1Gxi2p35Lpo9vqQwliy0NEE_dsRU69NmoMdUDfoDBJJveXFfNfxgqDOW-KoahEK692RdVi6EZ3FaU5mOIGe3kzhu-7jT02AC8HblfD6gZDijwXzrMeQLQ7lSzAuWVMlGiWgJav01T_SfVxS-dCjau1eQ_-qelMqCJOP5WG7QvW2tIs3rYSVdfUfVVkOx2DjhD4U_0nAm2OATTHnhP5PkQT0OkL60QixX9pYtG0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857080472</pqid></control><display><type>article</type><title>Biodegradable Magnesium Alloys for Personalised Temporary Implants</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Hendea, Radu Emil ; Raducanu, Doina ; Claver, Adrián ; García, José Antonio ; Cojocaru, Vasile Danut ; Nocivin, Anna ; Stanciu, Doina ; Serban, Nicolae ; Ivanescu, Steliana ; Trisca-Rusu, Corneliu ; Campian, Radu Septimiu</creator><creatorcontrib>Hendea, Radu Emil ; Raducanu, Doina ; Claver, Adrián ; García, José Antonio ; Cojocaru, Vasile Danut ; Nocivin, Anna ; Stanciu, Doina ; Serban, Nicolae ; Ivanescu, Steliana ; Trisca-Rusu, Corneliu ; Campian, Radu Septimiu</creatorcontrib><description>The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD—X-ray diffraction, and SEM—scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60.</description><identifier>ISSN: 2079-4983</identifier><identifier>EISSN: 2079-4983</identifier><identifier>DOI: 10.3390/jfb14080400</identifier><identifier>PMID: 37623645</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3D printing ; Additive manufacturing ; Alloys ; Biocompatibility ; Biodegradability ; biodegradable magnesium alloy ; Biodegradable materials ; Biodegradation ; Biomedical materials ; Bones ; Cancer ; Compression ; Compression tests ; Corrosion ; corrosion analysis ; Corrosion and anti-corrosives ; Corrosion resistance ; Corrosion tests ; Customization ; Design ; Diffraction ; Geometry ; Implants ; Laser beam melting ; laser powder bed fusion 3D additive manufacturing ; Lasers ; Magnesium ; Magnesium alloys ; Magnesium base alloys ; Magnetic resonance imaging ; Manufacturing ; Mechanical alloying ; mechanical analysis ; Mechanical properties ; microstructural analysis ; Oncology, Experimental ; Orthopedics ; Powder metallurgy ; Powders ; Process parameters ; Scanning electron microscopy ; Specialty metals industry ; Surgeons ; Surgery ; temporary personalised implants ; Transplants & implants ; X-ray diffraction ; X-rays ; Zinc ; Zinc compounds</subject><ispartof>Journal of functional biomaterials, 2023-07, Vol.14 (8), p.400</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c478t-3b64863804d210260d53d6e4240339a2a0547dad06c235e5b704642251f0cce83</cites><orcidid>0000-0002-1889-6074 ; 0000-0002-2252-2411 ; 0000-0001-8873-740X ; 0000-0001-6373-1087 ; 0000-0003-1081-0026 ; 0000-0001-8563-2952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857080472/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857080472?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Hendea, Radu Emil</creatorcontrib><creatorcontrib>Raducanu, Doina</creatorcontrib><creatorcontrib>Claver, Adrián</creatorcontrib><creatorcontrib>García, José Antonio</creatorcontrib><creatorcontrib>Cojocaru, Vasile Danut</creatorcontrib><creatorcontrib>Nocivin, Anna</creatorcontrib><creatorcontrib>Stanciu, Doina</creatorcontrib><creatorcontrib>Serban, Nicolae</creatorcontrib><creatorcontrib>Ivanescu, Steliana</creatorcontrib><creatorcontrib>Trisca-Rusu, Corneliu</creatorcontrib><creatorcontrib>Campian, Radu Septimiu</creatorcontrib><title>Biodegradable Magnesium Alloys for Personalised Temporary Implants</title><title>Journal of functional biomaterials</title><description>The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD—X-ray diffraction, and SEM—scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60.</description><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>biodegradable magnesium alloy</subject><subject>Biodegradable materials</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Cancer</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Corrosion</subject><subject>corrosion analysis</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Customization</subject><subject>Design</subject><subject>Diffraction</subject><subject>Geometry</subject><subject>Implants</subject><subject>Laser beam melting</subject><subject>laser powder bed fusion 3D additive manufacturing</subject><subject>Lasers</subject><subject>Magnesium</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Magnetic resonance imaging</subject><subject>Manufacturing</subject><subject>Mechanical alloying</subject><subject>mechanical analysis</subject><subject>Mechanical properties</subject><subject>microstructural analysis</subject><subject>Oncology, Experimental</subject><subject>Orthopedics</subject><subject>Powder metallurgy</subject><subject>Powders</subject><subject>Process parameters</subject><subject>Scanning electron microscopy</subject><subject>Specialty metals industry</subject><subject>Surgeons</subject><subject>Surgery</subject><subject>temporary personalised implants</subject><subject>Transplants & implants</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><subject>Zinc</subject><subject>Zinc compounds</subject><issn>2079-4983</issn><issn>2079-4983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEolXpiT8QiQsS2jL-jHNC24qPlYrgUM6WY4-DV0m82AlS_z0OW0EXMT7YGr_zeMYzVfWSwBVjLbzd-45wUMABnlTnFJp2w1vFnj46n1WXOe-hmARFCX9enbFGUia5OK-ur0N02CfjTDdg_dn0E-awjPV2GOJ9rn1M9VdMOU5mCBldfYfjISaT7uvdeBjMNOcX1TNvhoyXD_tF9e3D-7ubT5vbLx93N9vbjeWNmjesk1xJVlJ1lACV4ARzEjnlUCox1IDgjTMOpKVMoOga4JJTKogHa1Gxi2p35Lpo9vqQwliy0NEE_dsRU69NmoMdUDfoDBJJveXFfNfxgqDOW-KoahEK692RdVi6EZ3FaU5mOIGe3kzhu-7jT02AC8HblfD6gZDijwXzrMeQLQ7lSzAuWVMlGiWgJav01T_SfVxS-dCjau1eQ_-qelMqCJOP5WG7QvW2tIs3rYSVdfUfVVkOx2DjhD4U_0nAm2OATTHnhP5PkQT0OkL60QixX9pYtG0</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Hendea, Radu Emil</creator><creator>Raducanu, Doina</creator><creator>Claver, Adrián</creator><creator>García, José Antonio</creator><creator>Cojocaru, Vasile Danut</creator><creator>Nocivin, Anna</creator><creator>Stanciu, Doina</creator><creator>Serban, Nicolae</creator><creator>Ivanescu, Steliana</creator><creator>Trisca-Rusu, Corneliu</creator><creator>Campian, Radu Septimiu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1889-6074</orcidid><orcidid>https://orcid.org/0000-0002-2252-2411</orcidid><orcidid>https://orcid.org/0000-0001-8873-740X</orcidid><orcidid>https://orcid.org/0000-0001-6373-1087</orcidid><orcidid>https://orcid.org/0000-0003-1081-0026</orcidid><orcidid>https://orcid.org/0000-0001-8563-2952</orcidid></search><sort><creationdate>20230727</creationdate><title>Biodegradable Magnesium Alloys for Personalised Temporary Implants</title><author>Hendea, Radu Emil ; Raducanu, Doina ; Claver, Adrián ; García, José Antonio ; Cojocaru, Vasile Danut ; Nocivin, Anna ; Stanciu, Doina ; Serban, Nicolae ; Ivanescu, Steliana ; Trisca-Rusu, Corneliu ; Campian, Radu Septimiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-3b64863804d210260d53d6e4240339a2a0547dad06c235e5b704642251f0cce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>biodegradable magnesium alloy</topic><topic>Biodegradable materials</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Cancer</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Corrosion</topic><topic>corrosion analysis</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Customization</topic><topic>Design</topic><topic>Diffraction</topic><topic>Geometry</topic><topic>Implants</topic><topic>Laser beam melting</topic><topic>laser powder bed fusion 3D additive manufacturing</topic><topic>Lasers</topic><topic>Magnesium</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Magnetic resonance imaging</topic><topic>Manufacturing</topic><topic>Mechanical alloying</topic><topic>mechanical analysis</topic><topic>Mechanical properties</topic><topic>microstructural analysis</topic><topic>Oncology, Experimental</topic><topic>Orthopedics</topic><topic>Powder metallurgy</topic><topic>Powders</topic><topic>Process parameters</topic><topic>Scanning electron microscopy</topic><topic>Specialty metals industry</topic><topic>Surgeons</topic><topic>Surgery</topic><topic>temporary personalised implants</topic><topic>Transplants & implants</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><topic>Zinc</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendea, Radu Emil</creatorcontrib><creatorcontrib>Raducanu, Doina</creatorcontrib><creatorcontrib>Claver, Adrián</creatorcontrib><creatorcontrib>García, José Antonio</creatorcontrib><creatorcontrib>Cojocaru, Vasile Danut</creatorcontrib><creatorcontrib>Nocivin, Anna</creatorcontrib><creatorcontrib>Stanciu, Doina</creatorcontrib><creatorcontrib>Serban, Nicolae</creatorcontrib><creatorcontrib>Ivanescu, Steliana</creatorcontrib><creatorcontrib>Trisca-Rusu, Corneliu</creatorcontrib><creatorcontrib>Campian, Radu Septimiu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of functional biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendea, Radu Emil</au><au>Raducanu, Doina</au><au>Claver, Adrián</au><au>García, José Antonio</au><au>Cojocaru, Vasile Danut</au><au>Nocivin, Anna</au><au>Stanciu, Doina</au><au>Serban, Nicolae</au><au>Ivanescu, Steliana</au><au>Trisca-Rusu, Corneliu</au><au>Campian, Radu Septimiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable Magnesium Alloys for Personalised Temporary Implants</atitle><jtitle>Journal of functional biomaterials</jtitle><date>2023-07-27</date><risdate>2023</risdate><volume>14</volume><issue>8</issue><spage>400</spage><pages>400-</pages><issn>2079-4983</issn><eissn>2079-4983</eissn><abstract>The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD—X-ray diffraction, and SEM—scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37623645</pmid><doi>10.3390/jfb14080400</doi><orcidid>https://orcid.org/0000-0002-1889-6074</orcidid><orcidid>https://orcid.org/0000-0002-2252-2411</orcidid><orcidid>https://orcid.org/0000-0001-8873-740X</orcidid><orcidid>https://orcid.org/0000-0001-6373-1087</orcidid><orcidid>https://orcid.org/0000-0003-1081-0026</orcidid><orcidid>https://orcid.org/0000-0001-8563-2952</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4983 |
ispartof | Journal of functional biomaterials, 2023-07, Vol.14 (8), p.400 |
issn | 2079-4983 2079-4983 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7edae162fc4444fbb40cc2dfc1d289e0 |
source | Access via ProQuest (Open Access); PubMed Central |
subjects | 3D printing Additive manufacturing Alloys Biocompatibility Biodegradability biodegradable magnesium alloy Biodegradable materials Biodegradation Biomedical materials Bones Cancer Compression Compression tests Corrosion corrosion analysis Corrosion and anti-corrosives Corrosion resistance Corrosion tests Customization Design Diffraction Geometry Implants Laser beam melting laser powder bed fusion 3D additive manufacturing Lasers Magnesium Magnesium alloys Magnesium base alloys Magnetic resonance imaging Manufacturing Mechanical alloying mechanical analysis Mechanical properties microstructural analysis Oncology, Experimental Orthopedics Powder metallurgy Powders Process parameters Scanning electron microscopy Specialty metals industry Surgeons Surgery temporary personalised implants Transplants & implants X-ray diffraction X-rays Zinc Zinc compounds |
title | Biodegradable Magnesium Alloys for Personalised Temporary Implants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20Magnesium%20Alloys%20for%20Personalised%20Temporary%20Implants&rft.jtitle=Journal%20of%20functional%20biomaterials&rft.au=Hendea,%20Radu%20Emil&rft.date=2023-07-27&rft.volume=14&rft.issue=8&rft.spage=400&rft.pages=400-&rft.issn=2079-4983&rft.eissn=2079-4983&rft_id=info:doi/10.3390/jfb14080400&rft_dat=%3Cgale_doaj_%3EA762479600%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-3b64863804d210260d53d6e4240339a2a0547dad06c235e5b704642251f0cce83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857080472&rft_id=info:pmid/37623645&rft_galeid=A762479600&rfr_iscdi=true |