Loading…

Biodegradable Magnesium Alloys for Personalised Temporary Implants

The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional biomaterials 2023-07, Vol.14 (8), p.400
Main Authors: Hendea, Radu Emil, Raducanu, Doina, Claver, Adrián, García, José Antonio, Cojocaru, Vasile Danut, Nocivin, Anna, Stanciu, Doina, Serban, Nicolae, Ivanescu, Steliana, Trisca-Rusu, Corneliu, Campian, Radu Septimiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c478t-3b64863804d210260d53d6e4240339a2a0547dad06c235e5b704642251f0cce83
container_end_page
container_issue 8
container_start_page 400
container_title Journal of functional biomaterials
container_volume 14
creator Hendea, Radu Emil
Raducanu, Doina
Claver, Adrián
García, José Antonio
Cojocaru, Vasile Danut
Nocivin, Anna
Stanciu, Doina
Serban, Nicolae
Ivanescu, Steliana
Trisca-Rusu, Corneliu
Campian, Radu Septimiu
description The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD—X-ray diffraction, and SEM—scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60.
doi_str_mv 10.3390/jfb14080400
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7edae162fc4444fbb40cc2dfc1d289e0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762479600</galeid><doaj_id>oai_doaj_org_article_7edae162fc4444fbb40cc2dfc1d289e0</doaj_id><sourcerecordid>A762479600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-3b64863804d210260d53d6e4240339a2a0547dad06c235e5b704642251f0cce83</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpiT8QiQsS2jL-jHNC24qPlYrgUM6WY4-DV0m82AlS_z0OW0EXMT7YGr_zeMYzVfWSwBVjLbzd-45wUMABnlTnFJp2w1vFnj46n1WXOe-hmARFCX9enbFGUia5OK-ur0N02CfjTDdg_dn0E-awjPV2GOJ9rn1M9VdMOU5mCBldfYfjISaT7uvdeBjMNOcX1TNvhoyXD_tF9e3D-7ubT5vbLx93N9vbjeWNmjesk1xJVlJ1lACV4ARzEjnlUCox1IDgjTMOpKVMoOga4JJTKogHa1Gxi2p35Lpo9vqQwliy0NEE_dsRU69NmoMdUDfoDBJJveXFfNfxgqDOW-KoahEK692RdVi6EZ3FaU5mOIGe3kzhu-7jT02AC8HblfD6gZDijwXzrMeQLQ7lSzAuWVMlGiWgJav01T_SfVxS-dCjau1eQ_-qelMqCJOP5WG7QvW2tIs3rYSVdfUfVVkOx2DjhD4U_0nAm2OATTHnhP5PkQT0OkL60QixX9pYtG0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857080472</pqid></control><display><type>article</type><title>Biodegradable Magnesium Alloys for Personalised Temporary Implants</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Hendea, Radu Emil ; Raducanu, Doina ; Claver, Adrián ; García, José Antonio ; Cojocaru, Vasile Danut ; Nocivin, Anna ; Stanciu, Doina ; Serban, Nicolae ; Ivanescu, Steliana ; Trisca-Rusu, Corneliu ; Campian, Radu Septimiu</creator><creatorcontrib>Hendea, Radu Emil ; Raducanu, Doina ; Claver, Adrián ; García, José Antonio ; Cojocaru, Vasile Danut ; Nocivin, Anna ; Stanciu, Doina ; Serban, Nicolae ; Ivanescu, Steliana ; Trisca-Rusu, Corneliu ; Campian, Radu Septimiu</creatorcontrib><description>The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD—X-ray diffraction, and SEM—scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60.</description><identifier>ISSN: 2079-4983</identifier><identifier>EISSN: 2079-4983</identifier><identifier>DOI: 10.3390/jfb14080400</identifier><identifier>PMID: 37623645</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3D printing ; Additive manufacturing ; Alloys ; Biocompatibility ; Biodegradability ; biodegradable magnesium alloy ; Biodegradable materials ; Biodegradation ; Biomedical materials ; Bones ; Cancer ; Compression ; Compression tests ; Corrosion ; corrosion analysis ; Corrosion and anti-corrosives ; Corrosion resistance ; Corrosion tests ; Customization ; Design ; Diffraction ; Geometry ; Implants ; Laser beam melting ; laser powder bed fusion 3D additive manufacturing ; Lasers ; Magnesium ; Magnesium alloys ; Magnesium base alloys ; Magnetic resonance imaging ; Manufacturing ; Mechanical alloying ; mechanical analysis ; Mechanical properties ; microstructural analysis ; Oncology, Experimental ; Orthopedics ; Powder metallurgy ; Powders ; Process parameters ; Scanning electron microscopy ; Specialty metals industry ; Surgeons ; Surgery ; temporary personalised implants ; Transplants &amp; implants ; X-ray diffraction ; X-rays ; Zinc ; Zinc compounds</subject><ispartof>Journal of functional biomaterials, 2023-07, Vol.14 (8), p.400</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c478t-3b64863804d210260d53d6e4240339a2a0547dad06c235e5b704642251f0cce83</cites><orcidid>0000-0002-1889-6074 ; 0000-0002-2252-2411 ; 0000-0001-8873-740X ; 0000-0001-6373-1087 ; 0000-0003-1081-0026 ; 0000-0001-8563-2952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857080472/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857080472?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Hendea, Radu Emil</creatorcontrib><creatorcontrib>Raducanu, Doina</creatorcontrib><creatorcontrib>Claver, Adrián</creatorcontrib><creatorcontrib>García, José Antonio</creatorcontrib><creatorcontrib>Cojocaru, Vasile Danut</creatorcontrib><creatorcontrib>Nocivin, Anna</creatorcontrib><creatorcontrib>Stanciu, Doina</creatorcontrib><creatorcontrib>Serban, Nicolae</creatorcontrib><creatorcontrib>Ivanescu, Steliana</creatorcontrib><creatorcontrib>Trisca-Rusu, Corneliu</creatorcontrib><creatorcontrib>Campian, Radu Septimiu</creatorcontrib><title>Biodegradable Magnesium Alloys for Personalised Temporary Implants</title><title>Journal of functional biomaterials</title><description>The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD—X-ray diffraction, and SEM—scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60.</description><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>biodegradable magnesium alloy</subject><subject>Biodegradable materials</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Cancer</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Corrosion</subject><subject>corrosion analysis</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Customization</subject><subject>Design</subject><subject>Diffraction</subject><subject>Geometry</subject><subject>Implants</subject><subject>Laser beam melting</subject><subject>laser powder bed fusion 3D additive manufacturing</subject><subject>Lasers</subject><subject>Magnesium</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Magnetic resonance imaging</subject><subject>Manufacturing</subject><subject>Mechanical alloying</subject><subject>mechanical analysis</subject><subject>Mechanical properties</subject><subject>microstructural analysis</subject><subject>Oncology, Experimental</subject><subject>Orthopedics</subject><subject>Powder metallurgy</subject><subject>Powders</subject><subject>Process parameters</subject><subject>Scanning electron microscopy</subject><subject>Specialty metals industry</subject><subject>Surgeons</subject><subject>Surgery</subject><subject>temporary personalised implants</subject><subject>Transplants &amp; implants</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><subject>Zinc</subject><subject>Zinc compounds</subject><issn>2079-4983</issn><issn>2079-4983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEolXpiT8QiQsS2jL-jHNC24qPlYrgUM6WY4-DV0m82AlS_z0OW0EXMT7YGr_zeMYzVfWSwBVjLbzd-45wUMABnlTnFJp2w1vFnj46n1WXOe-hmARFCX9enbFGUia5OK-ur0N02CfjTDdg_dn0E-awjPV2GOJ9rn1M9VdMOU5mCBldfYfjISaT7uvdeBjMNOcX1TNvhoyXD_tF9e3D-7ubT5vbLx93N9vbjeWNmjesk1xJVlJ1lACV4ARzEjnlUCox1IDgjTMOpKVMoOga4JJTKogHa1Gxi2p35Lpo9vqQwliy0NEE_dsRU69NmoMdUDfoDBJJveXFfNfxgqDOW-KoahEK692RdVi6EZ3FaU5mOIGe3kzhu-7jT02AC8HblfD6gZDijwXzrMeQLQ7lSzAuWVMlGiWgJav01T_SfVxS-dCjau1eQ_-qelMqCJOP5WG7QvW2tIs3rYSVdfUfVVkOx2DjhD4U_0nAm2OATTHnhP5PkQT0OkL60QixX9pYtG0</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Hendea, Radu Emil</creator><creator>Raducanu, Doina</creator><creator>Claver, Adrián</creator><creator>García, José Antonio</creator><creator>Cojocaru, Vasile Danut</creator><creator>Nocivin, Anna</creator><creator>Stanciu, Doina</creator><creator>Serban, Nicolae</creator><creator>Ivanescu, Steliana</creator><creator>Trisca-Rusu, Corneliu</creator><creator>Campian, Radu Septimiu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1889-6074</orcidid><orcidid>https://orcid.org/0000-0002-2252-2411</orcidid><orcidid>https://orcid.org/0000-0001-8873-740X</orcidid><orcidid>https://orcid.org/0000-0001-6373-1087</orcidid><orcidid>https://orcid.org/0000-0003-1081-0026</orcidid><orcidid>https://orcid.org/0000-0001-8563-2952</orcidid></search><sort><creationdate>20230727</creationdate><title>Biodegradable Magnesium Alloys for Personalised Temporary Implants</title><author>Hendea, Radu Emil ; Raducanu, Doina ; Claver, Adrián ; García, José Antonio ; Cojocaru, Vasile Danut ; Nocivin, Anna ; Stanciu, Doina ; Serban, Nicolae ; Ivanescu, Steliana ; Trisca-Rusu, Corneliu ; Campian, Radu Septimiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-3b64863804d210260d53d6e4240339a2a0547dad06c235e5b704642251f0cce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>biodegradable magnesium alloy</topic><topic>Biodegradable materials</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Cancer</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Corrosion</topic><topic>corrosion analysis</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Customization</topic><topic>Design</topic><topic>Diffraction</topic><topic>Geometry</topic><topic>Implants</topic><topic>Laser beam melting</topic><topic>laser powder bed fusion 3D additive manufacturing</topic><topic>Lasers</topic><topic>Magnesium</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Magnetic resonance imaging</topic><topic>Manufacturing</topic><topic>Mechanical alloying</topic><topic>mechanical analysis</topic><topic>Mechanical properties</topic><topic>microstructural analysis</topic><topic>Oncology, Experimental</topic><topic>Orthopedics</topic><topic>Powder metallurgy</topic><topic>Powders</topic><topic>Process parameters</topic><topic>Scanning electron microscopy</topic><topic>Specialty metals industry</topic><topic>Surgeons</topic><topic>Surgery</topic><topic>temporary personalised implants</topic><topic>Transplants &amp; implants</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><topic>Zinc</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendea, Radu Emil</creatorcontrib><creatorcontrib>Raducanu, Doina</creatorcontrib><creatorcontrib>Claver, Adrián</creatorcontrib><creatorcontrib>García, José Antonio</creatorcontrib><creatorcontrib>Cojocaru, Vasile Danut</creatorcontrib><creatorcontrib>Nocivin, Anna</creatorcontrib><creatorcontrib>Stanciu, Doina</creatorcontrib><creatorcontrib>Serban, Nicolae</creatorcontrib><creatorcontrib>Ivanescu, Steliana</creatorcontrib><creatorcontrib>Trisca-Rusu, Corneliu</creatorcontrib><creatorcontrib>Campian, Radu Septimiu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of functional biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendea, Radu Emil</au><au>Raducanu, Doina</au><au>Claver, Adrián</au><au>García, José Antonio</au><au>Cojocaru, Vasile Danut</au><au>Nocivin, Anna</au><au>Stanciu, Doina</au><au>Serban, Nicolae</au><au>Ivanescu, Steliana</au><au>Trisca-Rusu, Corneliu</au><au>Campian, Radu Septimiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable Magnesium Alloys for Personalised Temporary Implants</atitle><jtitle>Journal of functional biomaterials</jtitle><date>2023-07-27</date><risdate>2023</risdate><volume>14</volume><issue>8</issue><spage>400</spage><pages>400-</pages><issn>2079-4983</issn><eissn>2079-4983</eissn><abstract>The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD—X-ray diffraction, and SEM—scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37623645</pmid><doi>10.3390/jfb14080400</doi><orcidid>https://orcid.org/0000-0002-1889-6074</orcidid><orcidid>https://orcid.org/0000-0002-2252-2411</orcidid><orcidid>https://orcid.org/0000-0001-8873-740X</orcidid><orcidid>https://orcid.org/0000-0001-6373-1087</orcidid><orcidid>https://orcid.org/0000-0003-1081-0026</orcidid><orcidid>https://orcid.org/0000-0001-8563-2952</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4983
ispartof Journal of functional biomaterials, 2023-07, Vol.14 (8), p.400
issn 2079-4983
2079-4983
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7edae162fc4444fbb40cc2dfc1d289e0
source Access via ProQuest (Open Access); PubMed Central
subjects 3D printing
Additive manufacturing
Alloys
Biocompatibility
Biodegradability
biodegradable magnesium alloy
Biodegradable materials
Biodegradation
Biomedical materials
Bones
Cancer
Compression
Compression tests
Corrosion
corrosion analysis
Corrosion and anti-corrosives
Corrosion resistance
Corrosion tests
Customization
Design
Diffraction
Geometry
Implants
Laser beam melting
laser powder bed fusion 3D additive manufacturing
Lasers
Magnesium
Magnesium alloys
Magnesium base alloys
Magnetic resonance imaging
Manufacturing
Mechanical alloying
mechanical analysis
Mechanical properties
microstructural analysis
Oncology, Experimental
Orthopedics
Powder metallurgy
Powders
Process parameters
Scanning electron microscopy
Specialty metals industry
Surgeons
Surgery
temporary personalised implants
Transplants & implants
X-ray diffraction
X-rays
Zinc
Zinc compounds
title Biodegradable Magnesium Alloys for Personalised Temporary Implants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20Magnesium%20Alloys%20for%20Personalised%20Temporary%20Implants&rft.jtitle=Journal%20of%20functional%20biomaterials&rft.au=Hendea,%20Radu%20Emil&rft.date=2023-07-27&rft.volume=14&rft.issue=8&rft.spage=400&rft.pages=400-&rft.issn=2079-4983&rft.eissn=2079-4983&rft_id=info:doi/10.3390/jfb14080400&rft_dat=%3Cgale_doaj_%3EA762479600%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-3b64863804d210260d53d6e4240339a2a0547dad06c235e5b704642251f0cce83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857080472&rft_id=info:pmid/37623645&rft_galeid=A762479600&rfr_iscdi=true