Loading…
Photo-tautomerization of acetaldehyde as a photochemical source of formic acid in the troposphere
Organic acids play a key role in the troposphere, contributing to atmospheric aqueous-phase chemistry, aerosol formation, and precipitation acidity. Atmospheric models currently account for less than half the observed, globally averaged formic acid loading. Here we report that acetaldehyde photo-tau...
Saved in:
Published in: | Nature communications 2018-07, Vol.9 (1), p.2584-7, Article 2584 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Organic acids play a key role in the troposphere, contributing to atmospheric aqueous-phase chemistry, aerosol formation, and precipitation acidity. Atmospheric models currently account for less than half the observed, globally averaged formic acid loading. Here we report that acetaldehyde photo-tautomerizes to vinyl alcohol under atmospherically relevant pressures of nitrogen, in the actinic wavelength range,
λ
= 300–330 nm, with measured quantum yields of 2–25%. Recent theoretical kinetics studies show hydroxyl-initiated oxidation of vinyl alcohol produces formic acid. Adding these pathways to an atmospheric chemistry box model (Master Chemical Mechanism) demonstrates increased formic acid concentrations by a factor of ~1.7 in the polluted troposphere and a factor of ~3 under pristine conditions. Incorporating this mechanism into the GEOS-Chem 3D global chemical transport model reveals an estimated 7% contribution to worldwide formic acid production, with up to 60% of the total modeled formic acid production over oceans arising from photo-tautomerization.
The concentration of formic acid in Earth’s atmosphere is under-predicted by atmospheric models. Here the authors show that acetaldehyde photo-tautomerizes to vinyl alcohol under tropospheric conditions, with subsequent oxidation via OH radicals supplying up to 60% of total modeled formic acid production over oceans. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-018-04824-2 |