Loading…
Lie algebras with differential operators of any weights
In this paper, we define a cohomology theory for differential Lie algebras of any weight. As applications of the cohomology, we study abelian extensions and formal deformations of differential Lie algebras of any weight. Finally, we consider homotopy differential operators on $ \mathrm{L}_{\infty} $...
Saved in:
Published in: | Electronic research archive 2023, Vol.31 (3), p.1195-1211 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c266t-d142a3c80908dc7b7a2812269b7736c2fa1b936dfa6c6c2e1897ae7008ada6ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c266t-d142a3c80908dc7b7a2812269b7736c2fa1b936dfa6c6c2e1897ae7008ada6ec3 |
container_end_page | 1211 |
container_issue | 3 |
container_start_page | 1195 |
container_title | Electronic research archive |
container_volume | 31 |
creator | Li, Yizheng Wang, Dingguo |
description | In this paper, we define a cohomology theory for differential Lie algebras of any weight. As applications of the cohomology, we study abelian extensions and formal deformations of differential Lie algebras of any weight. Finally, we consider homotopy differential operators on $ \mathrm{L}_{\infty} $ algebras and 2-differential operators of any weight on Lie 2-algebras, and we prove that the category of 2-term $ \mathrm{L}_{\infty} $ algebras with homotopy differential operators of any weight is same as the category of Lie 2-algebras with 2-differential operators of any weight. |
doi_str_mv | 10.3934/era.2023061 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7f194977c97a41918410d831fe7be8da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f194977c97a41918410d831fe7be8da</doaj_id><sourcerecordid>oai_doaj_org_article_7f194977c97a41918410d831fe7be8da</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-d142a3c80908dc7b7a2812269b7736c2fa1b936dfa6c6c2e1897ae7008ada6ec3</originalsourceid><addsrcrecordid>eNpN0MlKA0EQBuBGFAwxJ1-g7zKxerGXowSXQMCLnpuaXpIOYyZ0D4S8vaMJwVMth6-on5B7BnNhhXyMBeccuADFrsiEK2Ma9mTl9b_-lsxq3QIANwxAqgnRqxwpduvYFqz0kIcNDTmlWOJuyNjRfj-yQ18q7RPF3ZEeYl5vhnpHbhJ2Nc7OdUq-Xl8-F-_N6uNtuXheNZ4rNTSBSY7CG7BggtetxvEy58q2WgvleULWWqFCQuXHMTJjNUYNYDCgil5MyfLkhh63bl_yN5aj6zG7v0Vf1g7LkH0XnU7MSqu1HwnJLDOSQTCCpajbaAKO1sPJ8qWvtcR08Ri43wjd-Ks7Ryh-AHhJYwk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lie algebras with differential operators of any weights</title><source>Alma/SFX Local Collection</source><creator>Li, Yizheng ; Wang, Dingguo</creator><creatorcontrib>Li, Yizheng ; Wang, Dingguo</creatorcontrib><description>In this paper, we define a cohomology theory for differential Lie algebras of any weight. As applications of the cohomology, we study abelian extensions and formal deformations of differential Lie algebras of any weight. Finally, we consider homotopy differential operators on $ \mathrm{L}_{\infty} $ algebras and 2-differential operators of any weight on Lie 2-algebras, and we prove that the category of 2-term $ \mathrm{L}_{\infty} $ algebras with homotopy differential operators of any weight is same as the category of Lie 2-algebras with 2-differential operators of any weight.</description><identifier>ISSN: 2688-1594</identifier><identifier>EISSN: 2688-1594</identifier><identifier>DOI: 10.3934/era.2023061</identifier><language>eng</language><publisher>AIMS Press</publisher><subject>cohomology ; deformation ; derivation ; extension</subject><ispartof>Electronic research archive, 2023, Vol.31 (3), p.1195-1211</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-d142a3c80908dc7b7a2812269b7736c2fa1b936dfa6c6c2e1897ae7008ada6ec3</citedby><cites>FETCH-LOGICAL-c266t-d142a3c80908dc7b7a2812269b7736c2fa1b936dfa6c6c2e1897ae7008ada6ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Yizheng</creatorcontrib><creatorcontrib>Wang, Dingguo</creatorcontrib><title>Lie algebras with differential operators of any weights</title><title>Electronic research archive</title><description>In this paper, we define a cohomology theory for differential Lie algebras of any weight. As applications of the cohomology, we study abelian extensions and formal deformations of differential Lie algebras of any weight. Finally, we consider homotopy differential operators on $ \mathrm{L}_{\infty} $ algebras and 2-differential operators of any weight on Lie 2-algebras, and we prove that the category of 2-term $ \mathrm{L}_{\infty} $ algebras with homotopy differential operators of any weight is same as the category of Lie 2-algebras with 2-differential operators of any weight.</description><subject>cohomology</subject><subject>deformation</subject><subject>derivation</subject><subject>extension</subject><issn>2688-1594</issn><issn>2688-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpN0MlKA0EQBuBGFAwxJ1-g7zKxerGXowSXQMCLnpuaXpIOYyZ0D4S8vaMJwVMth6-on5B7BnNhhXyMBeccuADFrsiEK2Ma9mTl9b_-lsxq3QIANwxAqgnRqxwpduvYFqz0kIcNDTmlWOJuyNjRfj-yQ18q7RPF3ZEeYl5vhnpHbhJ2Nc7OdUq-Xl8-F-_N6uNtuXheNZ4rNTSBSY7CG7BggtetxvEy58q2WgvleULWWqFCQuXHMTJjNUYNYDCgil5MyfLkhh63bl_yN5aj6zG7v0Vf1g7LkH0XnU7MSqu1HwnJLDOSQTCCpajbaAKO1sPJ8qWvtcR08Ri43wjd-Ks7Ryh-AHhJYwk</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Li, Yizheng</creator><creator>Wang, Dingguo</creator><general>AIMS Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2023</creationdate><title>Lie algebras with differential operators of any weights</title><author>Li, Yizheng ; Wang, Dingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-d142a3c80908dc7b7a2812269b7736c2fa1b936dfa6c6c2e1897ae7008ada6ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>cohomology</topic><topic>deformation</topic><topic>derivation</topic><topic>extension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yizheng</creatorcontrib><creatorcontrib>Wang, Dingguo</creatorcontrib><collection>CrossRef</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Electronic research archive</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yizheng</au><au>Wang, Dingguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lie algebras with differential operators of any weights</atitle><jtitle>Electronic research archive</jtitle><date>2023</date><risdate>2023</risdate><volume>31</volume><issue>3</issue><spage>1195</spage><epage>1211</epage><pages>1195-1211</pages><issn>2688-1594</issn><eissn>2688-1594</eissn><abstract>In this paper, we define a cohomology theory for differential Lie algebras of any weight. As applications of the cohomology, we study abelian extensions and formal deformations of differential Lie algebras of any weight. Finally, we consider homotopy differential operators on $ \mathrm{L}_{\infty} $ algebras and 2-differential operators of any weight on Lie 2-algebras, and we prove that the category of 2-term $ \mathrm{L}_{\infty} $ algebras with homotopy differential operators of any weight is same as the category of Lie 2-algebras with 2-differential operators of any weight.</abstract><pub>AIMS Press</pub><doi>10.3934/era.2023061</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2688-1594 |
ispartof | Electronic research archive, 2023, Vol.31 (3), p.1195-1211 |
issn | 2688-1594 2688-1594 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7f194977c97a41918410d831fe7be8da |
source | Alma/SFX Local Collection |
subjects | cohomology deformation derivation extension |
title | Lie algebras with differential operators of any weights |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lie%20algebras%20with%20differential%20operators%20of%20any%20weights&rft.jtitle=Electronic%20research%20archive&rft.au=Li,%20Yizheng&rft.date=2023&rft.volume=31&rft.issue=3&rft.spage=1195&rft.epage=1211&rft.pages=1195-1211&rft.issn=2688-1594&rft.eissn=2688-1594&rft_id=info:doi/10.3934/era.2023061&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_7f194977c97a41918410d831fe7be8da%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-d142a3c80908dc7b7a2812269b7736c2fa1b936dfa6c6c2e1897ae7008ada6ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |