Loading…

Fitting Linear Mixed-Effects Models Using lme4

Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case inclu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical software 2015-10, Vol.67 (1), p.1-48
Main Authors: Bates, Douglas, Mächler, Martin, Bolker, Ben, Walker, Steve
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-1cf879b3b39e4b18d53336d82dadd4e4223a057eb72767200b101629ae8dc6713
cites
container_end_page 48
container_issue 1
container_start_page 1
container_title Journal of statistical software
container_volume 67
creator Bates, Douglas
Mächler, Martin
Bolker, Ben
Walker, Steve
description Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.
doi_str_mv 10.18637/jss.v067.i01
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7f279483412348928f01507440b0360d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f279483412348928f01507440b0360d</doaj_id><sourcerecordid>oai_doaj_org_article_7f279483412348928f01507440b0360d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-1cf879b3b39e4b18d53336d82dadd4e4223a057eb72767200b101629ae8dc6713</originalsourceid><addsrcrecordid>eNpNkM1KAzEYRYMoWKtL9_MCM37Jl8nPUkqrhSlu7DpkJknJMO1IMoi-vf0RcXUvl8tZHEIeKVRUCZRPfc7VJwhZRaBXZEZrrkopBFz_67fkLucegAHX9YxUqzhN8bArmnjwNhWb-OVduQzBd1MuNqPzQy62-fQY9p7fk5tgh-wffnNOtqvl--K1bN5e1ovnpuw41lNJu6CkbrFF7XlLlasRUTjFnHWOe84YWqilbyWTQjKAlgIVTFuvXCckxTlZX7hutL35SHFv07cZbTTnYUw7Y9MUu8EbGZjUXCGnDLnSTAWgNUjOoQUU4I6s8sLq0phz8uGPR8GcxZmjOHMSZ47i8AcTZl5B</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fitting Linear Mixed-Effects Models Using lme4</title><source>Directory of Open Access Journals</source><creator>Bates, Douglas ; Mächler, Martin ; Bolker, Ben ; Walker, Steve</creator><creatorcontrib>Bates, Douglas ; Mächler, Martin ; Bolker, Ben ; Walker, Steve</creatorcontrib><description>Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.</description><identifier>ISSN: 1548-7660</identifier><identifier>EISSN: 1548-7660</identifier><identifier>DOI: 10.18637/jss.v067.i01</identifier><language>eng</language><publisher>Foundation for Open Access Statistics</publisher><subject>Cholesky decomposition ; linear mixed models ; penalized least squares ; sparse matrix methods</subject><ispartof>Journal of statistical software, 2015-10, Vol.67 (1), p.1-48</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-1cf879b3b39e4b18d53336d82dadd4e4223a057eb72767200b101629ae8dc6713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27903,27904</link.rule.ids></links><search><creatorcontrib>Bates, Douglas</creatorcontrib><creatorcontrib>Mächler, Martin</creatorcontrib><creatorcontrib>Bolker, Ben</creatorcontrib><creatorcontrib>Walker, Steve</creatorcontrib><title>Fitting Linear Mixed-Effects Models Using lme4</title><title>Journal of statistical software</title><description>Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.</description><subject>Cholesky decomposition</subject><subject>linear mixed models</subject><subject>penalized least squares</subject><subject>sparse matrix methods</subject><issn>1548-7660</issn><issn>1548-7660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkM1KAzEYRYMoWKtL9_MCM37Jl8nPUkqrhSlu7DpkJknJMO1IMoi-vf0RcXUvl8tZHEIeKVRUCZRPfc7VJwhZRaBXZEZrrkopBFz_67fkLucegAHX9YxUqzhN8bArmnjwNhWb-OVduQzBd1MuNqPzQy62-fQY9p7fk5tgh-wffnNOtqvl--K1bN5e1ovnpuw41lNJu6CkbrFF7XlLlasRUTjFnHWOe84YWqilbyWTQjKAlgIVTFuvXCckxTlZX7hutL35SHFv07cZbTTnYUw7Y9MUu8EbGZjUXCGnDLnSTAWgNUjOoQUU4I6s8sLq0phz8uGPR8GcxZmjOHMSZ47i8AcTZl5B</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Bates, Douglas</creator><creator>Mächler, Martin</creator><creator>Bolker, Ben</creator><creator>Walker, Steve</creator><general>Foundation for Open Access Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20151001</creationdate><title>Fitting Linear Mixed-Effects Models Using lme4</title><author>Bates, Douglas ; Mächler, Martin ; Bolker, Ben ; Walker, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-1cf879b3b39e4b18d53336d82dadd4e4223a057eb72767200b101629ae8dc6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cholesky decomposition</topic><topic>linear mixed models</topic><topic>penalized least squares</topic><topic>sparse matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bates, Douglas</creatorcontrib><creatorcontrib>Mächler, Martin</creatorcontrib><creatorcontrib>Bolker, Ben</creatorcontrib><creatorcontrib>Walker, Steve</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of statistical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bates, Douglas</au><au>Mächler, Martin</au><au>Bolker, Ben</au><au>Walker, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fitting Linear Mixed-Effects Models Using lme4</atitle><jtitle>Journal of statistical software</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>67</volume><issue>1</issue><spage>1</spage><epage>48</epage><pages>1-48</pages><issn>1548-7660</issn><eissn>1548-7660</eissn><abstract>Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.</abstract><pub>Foundation for Open Access Statistics</pub><doi>10.18637/jss.v067.i01</doi><tpages>48</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7660
ispartof Journal of statistical software, 2015-10, Vol.67 (1), p.1-48
issn 1548-7660
1548-7660
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7f279483412348928f01507440b0360d
source Directory of Open Access Journals
subjects Cholesky decomposition
linear mixed models
penalized least squares
sparse matrix methods
title Fitting Linear Mixed-Effects Models Using lme4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fitting%20Linear%20Mixed-Effects%20Models%20Using%20lme4&rft.jtitle=Journal%20of%20statistical%20software&rft.au=Bates,%20Douglas&rft.date=2015-10-01&rft.volume=67&rft.issue=1&rft.spage=1&rft.epage=48&rft.pages=1-48&rft.issn=1548-7660&rft.eissn=1548-7660&rft_id=info:doi/10.18637/jss.v067.i01&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_7f279483412348928f01507440b0360d%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-1cf879b3b39e4b18d53336d82dadd4e4223a057eb72767200b101629ae8dc6713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true