Loading…
Fitting Linear Mixed-Effects Models Using lme4
Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case inclu...
Saved in:
Published in: | Journal of statistical software 2015-10, Vol.67 (1), p.1-48 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c435t-1cf879b3b39e4b18d53336d82dadd4e4223a057eb72767200b101629ae8dc6713 |
---|---|
cites | |
container_end_page | 48 |
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of statistical software |
container_volume | 67 |
creator | Bates, Douglas Mächler, Martin Bolker, Ben Walker, Steve |
description | Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer. |
doi_str_mv | 10.18637/jss.v067.i01 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7f279483412348928f01507440b0360d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f279483412348928f01507440b0360d</doaj_id><sourcerecordid>oai_doaj_org_article_7f279483412348928f01507440b0360d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-1cf879b3b39e4b18d53336d82dadd4e4223a057eb72767200b101629ae8dc6713</originalsourceid><addsrcrecordid>eNpNkM1KAzEYRYMoWKtL9_MCM37Jl8nPUkqrhSlu7DpkJknJMO1IMoi-vf0RcXUvl8tZHEIeKVRUCZRPfc7VJwhZRaBXZEZrrkopBFz_67fkLucegAHX9YxUqzhN8bArmnjwNhWb-OVduQzBd1MuNqPzQy62-fQY9p7fk5tgh-wffnNOtqvl--K1bN5e1ovnpuw41lNJu6CkbrFF7XlLlasRUTjFnHWOe84YWqilbyWTQjKAlgIVTFuvXCckxTlZX7hutL35SHFv07cZbTTnYUw7Y9MUu8EbGZjUXCGnDLnSTAWgNUjOoQUU4I6s8sLq0phz8uGPR8GcxZmjOHMSZ47i8AcTZl5B</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fitting Linear Mixed-Effects Models Using lme4</title><source>Directory of Open Access Journals</source><creator>Bates, Douglas ; Mächler, Martin ; Bolker, Ben ; Walker, Steve</creator><creatorcontrib>Bates, Douglas ; Mächler, Martin ; Bolker, Ben ; Walker, Steve</creatorcontrib><description>Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.</description><identifier>ISSN: 1548-7660</identifier><identifier>EISSN: 1548-7660</identifier><identifier>DOI: 10.18637/jss.v067.i01</identifier><language>eng</language><publisher>Foundation for Open Access Statistics</publisher><subject>Cholesky decomposition ; linear mixed models ; penalized least squares ; sparse matrix methods</subject><ispartof>Journal of statistical software, 2015-10, Vol.67 (1), p.1-48</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-1cf879b3b39e4b18d53336d82dadd4e4223a057eb72767200b101629ae8dc6713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27903,27904</link.rule.ids></links><search><creatorcontrib>Bates, Douglas</creatorcontrib><creatorcontrib>Mächler, Martin</creatorcontrib><creatorcontrib>Bolker, Ben</creatorcontrib><creatorcontrib>Walker, Steve</creatorcontrib><title>Fitting Linear Mixed-Effects Models Using lme4</title><title>Journal of statistical software</title><description>Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.</description><subject>Cholesky decomposition</subject><subject>linear mixed models</subject><subject>penalized least squares</subject><subject>sparse matrix methods</subject><issn>1548-7660</issn><issn>1548-7660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkM1KAzEYRYMoWKtL9_MCM37Jl8nPUkqrhSlu7DpkJknJMO1IMoi-vf0RcXUvl8tZHEIeKVRUCZRPfc7VJwhZRaBXZEZrrkopBFz_67fkLucegAHX9YxUqzhN8bArmnjwNhWb-OVduQzBd1MuNqPzQy62-fQY9p7fk5tgh-wffnNOtqvl--K1bN5e1ovnpuw41lNJu6CkbrFF7XlLlasRUTjFnHWOe84YWqilbyWTQjKAlgIVTFuvXCckxTlZX7hutL35SHFv07cZbTTnYUw7Y9MUu8EbGZjUXCGnDLnSTAWgNUjOoQUU4I6s8sLq0phz8uGPR8GcxZmjOHMSZ47i8AcTZl5B</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Bates, Douglas</creator><creator>Mächler, Martin</creator><creator>Bolker, Ben</creator><creator>Walker, Steve</creator><general>Foundation for Open Access Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20151001</creationdate><title>Fitting Linear Mixed-Effects Models Using lme4</title><author>Bates, Douglas ; Mächler, Martin ; Bolker, Ben ; Walker, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-1cf879b3b39e4b18d53336d82dadd4e4223a057eb72767200b101629ae8dc6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cholesky decomposition</topic><topic>linear mixed models</topic><topic>penalized least squares</topic><topic>sparse matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bates, Douglas</creatorcontrib><creatorcontrib>Mächler, Martin</creatorcontrib><creatorcontrib>Bolker, Ben</creatorcontrib><creatorcontrib>Walker, Steve</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of statistical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bates, Douglas</au><au>Mächler, Martin</au><au>Bolker, Ben</au><au>Walker, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fitting Linear Mixed-Effects Models Using lme4</atitle><jtitle>Journal of statistical software</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>67</volume><issue>1</issue><spage>1</spage><epage>48</epage><pages>1-48</pages><issn>1548-7660</issn><eissn>1548-7660</eissn><abstract>Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.</abstract><pub>Foundation for Open Access Statistics</pub><doi>10.18637/jss.v067.i01</doi><tpages>48</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7660 |
ispartof | Journal of statistical software, 2015-10, Vol.67 (1), p.1-48 |
issn | 1548-7660 1548-7660 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7f279483412348928f01507440b0360d |
source | Directory of Open Access Journals |
subjects | Cholesky decomposition linear mixed models penalized least squares sparse matrix methods |
title | Fitting Linear Mixed-Effects Models Using lme4 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fitting%20Linear%20Mixed-Effects%20Models%20Using%20lme4&rft.jtitle=Journal%20of%20statistical%20software&rft.au=Bates,%20Douglas&rft.date=2015-10-01&rft.volume=67&rft.issue=1&rft.spage=1&rft.epage=48&rft.pages=1-48&rft.issn=1548-7660&rft.eissn=1548-7660&rft_id=info:doi/10.18637/jss.v067.i01&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_7f279483412348928f01507440b0360d%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-1cf879b3b39e4b18d53336d82dadd4e4223a057eb72767200b101629ae8dc6713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |