Loading…

HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling

A comparison between High-Performance Thin-Layer Chromatography (HPTLC) analysis and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), coupled with Principal Component Analysis (PCA) was carried out by performing a combined metabolomics study to discriminate ( ) plants. For a rapid...

Full description

Saved in:
Bibliographic Details
Published in:Foods 2019-07, Vol.8 (8), p.294
Main Authors: Maldini, Mariateresa, D'Urso, Gilda, Pagliuca, Giordana, Petretto, Giacomo Luigi, Foddai, Marzia, Gallo, Francesca Romana, Multari, Giuseppina, Caruso, Donatella, Montoro, Paola, Pintore, Giorgio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33
cites cdi_FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33
container_end_page
container_issue 8
container_start_page 294
container_title Foods
container_volume 8
creator Maldini, Mariateresa
D'Urso, Gilda
Pagliuca, Giordana
Petretto, Giacomo Luigi
Foddai, Marzia
Gallo, Francesca Romana
Multari, Giuseppina
Caruso, Donatella
Montoro, Paola
Pintore, Giorgio
description A comparison between High-Performance Thin-Layer Chromatography (HPTLC) analysis and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), coupled with Principal Component Analysis (PCA) was carried out by performing a combined metabolomics study to discriminate ( ) plants. For a rapid digital record of extracts (leaves, yellow fruit, and red fruit collected in La Maddalena and Sassari, Sardinia), HPTLC was used. Data were then analysed by PCA with the results of the ability of this technique to discriminate samples. Similarly, extracts were acquired by non-targeted LC-HRMS followed by unsupervised PCA, and then by LC-HRMS (MS) to identify secondary metabolites involved in the differentiation of the samples. As a result, we demonstrated that HPTLC may be applied as a simple and reliable untargeted approach to rapidly discriminate extracts based on tissues and/or geographical origins, while LC-HRMS could be used to identify which metabolites are able to discriminate samples.
doi_str_mv 10.3390/foods8080294
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7f4da618399542a4bff5356f7dc9c95a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f4da618399542a4bff5356f7dc9c95a</doaj_id><sourcerecordid>2335134434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33</originalsourceid><addsrcrecordid>eNqFkktvEzEURkcIRKvQHWvkJQsG_BzbG6RoBKRSKiJa1pbHj8TVZBxsD6L_HtOUKl3VG1_5Hh35Xn1N8xbBj4RI-MnHaLOAAmJJXzTnmEDaCsTEy5P6rLnI-RbWIxERBL9uzggijHcEnzdutblZ9-2mX4I-7g-j27up6HQHSgSrH1fX950wgbJzoNfZgesy2zsQPVimYS5zBvPkbATLqYT4J1g9FbDZuSmOwYBNij6MYdq-aV55PWZ38XAvmp9fv9z0q3b9_dtlv1y3hgpSWsoRp5YaIXHHqWBGUwiRdL7rpOWDqYUeEOUOW8eMMJYwyJHVrnNeaE_Iork8em3Ut-qQwr6OoqIO6v4hpq3SqQQzOsU9tbpDgkjJKNZ08J4R1nlujTSS6er6fHQd5mHvrKl7SXp8In3amcJObeNv1XFMWBUvmvcPghR_zS4XtQ_ZuHHUk4tzVphUjFBK6PNo3QdEFEte0Q9H1KSYc3L-8UcIqn-ZUKeZqPi70yke4f8JIH8BiJ6x_w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267014297</pqid></control><display><type>article</type><title>HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling</title><source>PubMed Central</source><creator>Maldini, Mariateresa ; D'Urso, Gilda ; Pagliuca, Giordana ; Petretto, Giacomo Luigi ; Foddai, Marzia ; Gallo, Francesca Romana ; Multari, Giuseppina ; Caruso, Donatella ; Montoro, Paola ; Pintore, Giorgio</creator><creatorcontrib>Maldini, Mariateresa ; D'Urso, Gilda ; Pagliuca, Giordana ; Petretto, Giacomo Luigi ; Foddai, Marzia ; Gallo, Francesca Romana ; Multari, Giuseppina ; Caruso, Donatella ; Montoro, Paola ; Pintore, Giorgio</creatorcontrib><description>A comparison between High-Performance Thin-Layer Chromatography (HPTLC) analysis and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), coupled with Principal Component Analysis (PCA) was carried out by performing a combined metabolomics study to discriminate ( ) plants. For a rapid digital record of extracts (leaves, yellow fruit, and red fruit collected in La Maddalena and Sassari, Sardinia), HPTLC was used. Data were then analysed by PCA with the results of the ability of this technique to discriminate samples. Similarly, extracts were acquired by non-targeted LC-HRMS followed by unsupervised PCA, and then by LC-HRMS (MS) to identify secondary metabolites involved in the differentiation of the samples. As a result, we demonstrated that HPTLC may be applied as a simple and reliable untargeted approach to rapidly discriminate extracts based on tissues and/or geographical origins, while LC-HRMS could be used to identify which metabolites are able to discriminate samples.</description><identifier>ISSN: 2304-8158</identifier><identifier>EISSN: 2304-8158</identifier><identifier>DOI: 10.3390/foods8080294</identifier><identifier>PMID: 31357632</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>antioxidant activities ; antioxidants ; Arbutus unedo ; case studies ; fruits ; HPTLC ; LC–HRMS ; leaves ; mass spectrometry ; metabolomics ; PCA ; principal component analysis ; provenance ; Sardinia ; secondary metabolites ; thin layer chromatography ; tissues</subject><ispartof>Foods, 2019-07, Vol.8 (8), p.294</ispartof><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33</citedby><cites>FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33</cites><orcidid>0000-0001-9528-5632 ; 0000-0002-2576-626X ; 0000-0001-9445-6006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723518/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723518/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31357632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maldini, Mariateresa</creatorcontrib><creatorcontrib>D'Urso, Gilda</creatorcontrib><creatorcontrib>Pagliuca, Giordana</creatorcontrib><creatorcontrib>Petretto, Giacomo Luigi</creatorcontrib><creatorcontrib>Foddai, Marzia</creatorcontrib><creatorcontrib>Gallo, Francesca Romana</creatorcontrib><creatorcontrib>Multari, Giuseppina</creatorcontrib><creatorcontrib>Caruso, Donatella</creatorcontrib><creatorcontrib>Montoro, Paola</creatorcontrib><creatorcontrib>Pintore, Giorgio</creatorcontrib><title>HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling</title><title>Foods</title><addtitle>Foods</addtitle><description>A comparison between High-Performance Thin-Layer Chromatography (HPTLC) analysis and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), coupled with Principal Component Analysis (PCA) was carried out by performing a combined metabolomics study to discriminate ( ) plants. For a rapid digital record of extracts (leaves, yellow fruit, and red fruit collected in La Maddalena and Sassari, Sardinia), HPTLC was used. Data were then analysed by PCA with the results of the ability of this technique to discriminate samples. Similarly, extracts were acquired by non-targeted LC-HRMS followed by unsupervised PCA, and then by LC-HRMS (MS) to identify secondary metabolites involved in the differentiation of the samples. As a result, we demonstrated that HPTLC may be applied as a simple and reliable untargeted approach to rapidly discriminate extracts based on tissues and/or geographical origins, while LC-HRMS could be used to identify which metabolites are able to discriminate samples.</description><subject>antioxidant activities</subject><subject>antioxidants</subject><subject>Arbutus unedo</subject><subject>case studies</subject><subject>fruits</subject><subject>HPTLC</subject><subject>LC–HRMS</subject><subject>leaves</subject><subject>mass spectrometry</subject><subject>metabolomics</subject><subject>PCA</subject><subject>principal component analysis</subject><subject>provenance</subject><subject>Sardinia</subject><subject>secondary metabolites</subject><subject>thin layer chromatography</subject><subject>tissues</subject><issn>2304-8158</issn><issn>2304-8158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkktvEzEURkcIRKvQHWvkJQsG_BzbG6RoBKRSKiJa1pbHj8TVZBxsD6L_HtOUKl3VG1_5Hh35Xn1N8xbBj4RI-MnHaLOAAmJJXzTnmEDaCsTEy5P6rLnI-RbWIxERBL9uzggijHcEnzdutblZ9-2mX4I-7g-j27up6HQHSgSrH1fX950wgbJzoNfZgesy2zsQPVimYS5zBvPkbATLqYT4J1g9FbDZuSmOwYBNij6MYdq-aV55PWZ38XAvmp9fv9z0q3b9_dtlv1y3hgpSWsoRp5YaIXHHqWBGUwiRdL7rpOWDqYUeEOUOW8eMMJYwyJHVrnNeaE_Iork8em3Ut-qQwr6OoqIO6v4hpq3SqQQzOsU9tbpDgkjJKNZ08J4R1nlujTSS6er6fHQd5mHvrKl7SXp8In3amcJObeNv1XFMWBUvmvcPghR_zS4XtQ_ZuHHUk4tzVphUjFBK6PNo3QdEFEte0Q9H1KSYc3L-8UcIqn-ZUKeZqPi70yke4f8JIH8BiJ6x_w</recordid><startdate>20190727</startdate><enddate>20190727</enddate><creator>Maldini, Mariateresa</creator><creator>D'Urso, Gilda</creator><creator>Pagliuca, Giordana</creator><creator>Petretto, Giacomo Luigi</creator><creator>Foddai, Marzia</creator><creator>Gallo, Francesca Romana</creator><creator>Multari, Giuseppina</creator><creator>Caruso, Donatella</creator><creator>Montoro, Paola</creator><creator>Pintore, Giorgio</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9528-5632</orcidid><orcidid>https://orcid.org/0000-0002-2576-626X</orcidid><orcidid>https://orcid.org/0000-0001-9445-6006</orcidid></search><sort><creationdate>20190727</creationdate><title>HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling</title><author>Maldini, Mariateresa ; D'Urso, Gilda ; Pagliuca, Giordana ; Petretto, Giacomo Luigi ; Foddai, Marzia ; Gallo, Francesca Romana ; Multari, Giuseppina ; Caruso, Donatella ; Montoro, Paola ; Pintore, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>antioxidant activities</topic><topic>antioxidants</topic><topic>Arbutus unedo</topic><topic>case studies</topic><topic>fruits</topic><topic>HPTLC</topic><topic>LC–HRMS</topic><topic>leaves</topic><topic>mass spectrometry</topic><topic>metabolomics</topic><topic>PCA</topic><topic>principal component analysis</topic><topic>provenance</topic><topic>Sardinia</topic><topic>secondary metabolites</topic><topic>thin layer chromatography</topic><topic>tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maldini, Mariateresa</creatorcontrib><creatorcontrib>D'Urso, Gilda</creatorcontrib><creatorcontrib>Pagliuca, Giordana</creatorcontrib><creatorcontrib>Petretto, Giacomo Luigi</creatorcontrib><creatorcontrib>Foddai, Marzia</creatorcontrib><creatorcontrib>Gallo, Francesca Romana</creatorcontrib><creatorcontrib>Multari, Giuseppina</creatorcontrib><creatorcontrib>Caruso, Donatella</creatorcontrib><creatorcontrib>Montoro, Paola</creatorcontrib><creatorcontrib>Pintore, Giorgio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Foods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maldini, Mariateresa</au><au>D'Urso, Gilda</au><au>Pagliuca, Giordana</au><au>Petretto, Giacomo Luigi</au><au>Foddai, Marzia</au><au>Gallo, Francesca Romana</au><au>Multari, Giuseppina</au><au>Caruso, Donatella</au><au>Montoro, Paola</au><au>Pintore, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling</atitle><jtitle>Foods</jtitle><addtitle>Foods</addtitle><date>2019-07-27</date><risdate>2019</risdate><volume>8</volume><issue>8</issue><spage>294</spage><pages>294-</pages><issn>2304-8158</issn><eissn>2304-8158</eissn><abstract>A comparison between High-Performance Thin-Layer Chromatography (HPTLC) analysis and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), coupled with Principal Component Analysis (PCA) was carried out by performing a combined metabolomics study to discriminate ( ) plants. For a rapid digital record of extracts (leaves, yellow fruit, and red fruit collected in La Maddalena and Sassari, Sardinia), HPTLC was used. Data were then analysed by PCA with the results of the ability of this technique to discriminate samples. Similarly, extracts were acquired by non-targeted LC-HRMS followed by unsupervised PCA, and then by LC-HRMS (MS) to identify secondary metabolites involved in the differentiation of the samples. As a result, we demonstrated that HPTLC may be applied as a simple and reliable untargeted approach to rapidly discriminate extracts based on tissues and/or geographical origins, while LC-HRMS could be used to identify which metabolites are able to discriminate samples.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>31357632</pmid><doi>10.3390/foods8080294</doi><orcidid>https://orcid.org/0000-0001-9528-5632</orcidid><orcidid>https://orcid.org/0000-0002-2576-626X</orcidid><orcidid>https://orcid.org/0000-0001-9445-6006</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2304-8158
ispartof Foods, 2019-07, Vol.8 (8), p.294
issn 2304-8158
2304-8158
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7f4da618399542a4bff5356f7dc9c95a
source PubMed Central
subjects antioxidant activities
antioxidants
Arbutus unedo
case studies
fruits
HPTLC
LC–HRMS
leaves
mass spectrometry
metabolomics
PCA
principal component analysis
provenance
Sardinia
secondary metabolites
thin layer chromatography
tissues
title HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HPTLC-PCA%20Complementary%20to%20HRMS-PCA%20in%20the%20Case%20Study%20of%20Arbutus%20unedo%20Antioxidant%20Phenolic%20Profiling&rft.jtitle=Foods&rft.au=Maldini,%20Mariateresa&rft.date=2019-07-27&rft.volume=8&rft.issue=8&rft.spage=294&rft.pages=294-&rft.issn=2304-8158&rft.eissn=2304-8158&rft_id=info:doi/10.3390/foods8080294&rft_dat=%3Cproquest_doaj_%3E2335134434%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267014297&rft_id=info:pmid/31357632&rfr_iscdi=true