Loading…
HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling
A comparison between High-Performance Thin-Layer Chromatography (HPTLC) analysis and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), coupled with Principal Component Analysis (PCA) was carried out by performing a combined metabolomics study to discriminate ( ) plants. For a rapid...
Saved in:
Published in: | Foods 2019-07, Vol.8 (8), p.294 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33 |
---|---|
cites | cdi_FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33 |
container_end_page | |
container_issue | 8 |
container_start_page | 294 |
container_title | Foods |
container_volume | 8 |
creator | Maldini, Mariateresa D'Urso, Gilda Pagliuca, Giordana Petretto, Giacomo Luigi Foddai, Marzia Gallo, Francesca Romana Multari, Giuseppina Caruso, Donatella Montoro, Paola Pintore, Giorgio |
description | A comparison between High-Performance Thin-Layer Chromatography (HPTLC) analysis and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), coupled with Principal Component Analysis (PCA) was carried out by performing a combined metabolomics study to discriminate
(
) plants. For a rapid digital record of
extracts (leaves, yellow fruit, and red fruit collected in La Maddalena and Sassari, Sardinia), HPTLC was used. Data were then analysed by PCA with the results of the ability of this technique to discriminate samples. Similarly, extracts were acquired by non-targeted LC-HRMS followed by unsupervised PCA, and then by LC-HRMS (MS) to identify secondary metabolites involved in the differentiation of the samples. As a result, we demonstrated that HPTLC may be applied as a simple and reliable untargeted approach to rapidly discriminate extracts based on tissues and/or geographical origins, while LC-HRMS could be used to identify which metabolites are able to discriminate samples. |
doi_str_mv | 10.3390/foods8080294 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7f4da618399542a4bff5356f7dc9c95a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f4da618399542a4bff5356f7dc9c95a</doaj_id><sourcerecordid>2335134434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33</originalsourceid><addsrcrecordid>eNqFkktvEzEURkcIRKvQHWvkJQsG_BzbG6RoBKRSKiJa1pbHj8TVZBxsD6L_HtOUKl3VG1_5Hh35Xn1N8xbBj4RI-MnHaLOAAmJJXzTnmEDaCsTEy5P6rLnI-RbWIxERBL9uzggijHcEnzdutblZ9-2mX4I-7g-j27up6HQHSgSrH1fX950wgbJzoNfZgesy2zsQPVimYS5zBvPkbATLqYT4J1g9FbDZuSmOwYBNij6MYdq-aV55PWZ38XAvmp9fv9z0q3b9_dtlv1y3hgpSWsoRp5YaIXHHqWBGUwiRdL7rpOWDqYUeEOUOW8eMMJYwyJHVrnNeaE_Iork8em3Ut-qQwr6OoqIO6v4hpq3SqQQzOsU9tbpDgkjJKNZ08J4R1nlujTSS6er6fHQd5mHvrKl7SXp8In3amcJObeNv1XFMWBUvmvcPghR_zS4XtQ_ZuHHUk4tzVphUjFBK6PNo3QdEFEte0Q9H1KSYc3L-8UcIqn-ZUKeZqPi70yke4f8JIH8BiJ6x_w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267014297</pqid></control><display><type>article</type><title>HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling</title><source>PubMed Central</source><creator>Maldini, Mariateresa ; D'Urso, Gilda ; Pagliuca, Giordana ; Petretto, Giacomo Luigi ; Foddai, Marzia ; Gallo, Francesca Romana ; Multari, Giuseppina ; Caruso, Donatella ; Montoro, Paola ; Pintore, Giorgio</creator><creatorcontrib>Maldini, Mariateresa ; D'Urso, Gilda ; Pagliuca, Giordana ; Petretto, Giacomo Luigi ; Foddai, Marzia ; Gallo, Francesca Romana ; Multari, Giuseppina ; Caruso, Donatella ; Montoro, Paola ; Pintore, Giorgio</creatorcontrib><description>A comparison between High-Performance Thin-Layer Chromatography (HPTLC) analysis and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), coupled with Principal Component Analysis (PCA) was carried out by performing a combined metabolomics study to discriminate
(
) plants. For a rapid digital record of
extracts (leaves, yellow fruit, and red fruit collected in La Maddalena and Sassari, Sardinia), HPTLC was used. Data were then analysed by PCA with the results of the ability of this technique to discriminate samples. Similarly, extracts were acquired by non-targeted LC-HRMS followed by unsupervised PCA, and then by LC-HRMS (MS) to identify secondary metabolites involved in the differentiation of the samples. As a result, we demonstrated that HPTLC may be applied as a simple and reliable untargeted approach to rapidly discriminate extracts based on tissues and/or geographical origins, while LC-HRMS could be used to identify which metabolites are able to discriminate samples.</description><identifier>ISSN: 2304-8158</identifier><identifier>EISSN: 2304-8158</identifier><identifier>DOI: 10.3390/foods8080294</identifier><identifier>PMID: 31357632</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>antioxidant activities ; antioxidants ; Arbutus unedo ; case studies ; fruits ; HPTLC ; LC–HRMS ; leaves ; mass spectrometry ; metabolomics ; PCA ; principal component analysis ; provenance ; Sardinia ; secondary metabolites ; thin layer chromatography ; tissues</subject><ispartof>Foods, 2019-07, Vol.8 (8), p.294</ispartof><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33</citedby><cites>FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33</cites><orcidid>0000-0001-9528-5632 ; 0000-0002-2576-626X ; 0000-0001-9445-6006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723518/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723518/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31357632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maldini, Mariateresa</creatorcontrib><creatorcontrib>D'Urso, Gilda</creatorcontrib><creatorcontrib>Pagliuca, Giordana</creatorcontrib><creatorcontrib>Petretto, Giacomo Luigi</creatorcontrib><creatorcontrib>Foddai, Marzia</creatorcontrib><creatorcontrib>Gallo, Francesca Romana</creatorcontrib><creatorcontrib>Multari, Giuseppina</creatorcontrib><creatorcontrib>Caruso, Donatella</creatorcontrib><creatorcontrib>Montoro, Paola</creatorcontrib><creatorcontrib>Pintore, Giorgio</creatorcontrib><title>HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling</title><title>Foods</title><addtitle>Foods</addtitle><description>A comparison between High-Performance Thin-Layer Chromatography (HPTLC) analysis and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), coupled with Principal Component Analysis (PCA) was carried out by performing a combined metabolomics study to discriminate
(
) plants. For a rapid digital record of
extracts (leaves, yellow fruit, and red fruit collected in La Maddalena and Sassari, Sardinia), HPTLC was used. Data were then analysed by PCA with the results of the ability of this technique to discriminate samples. Similarly, extracts were acquired by non-targeted LC-HRMS followed by unsupervised PCA, and then by LC-HRMS (MS) to identify secondary metabolites involved in the differentiation of the samples. As a result, we demonstrated that HPTLC may be applied as a simple and reliable untargeted approach to rapidly discriminate extracts based on tissues and/or geographical origins, while LC-HRMS could be used to identify which metabolites are able to discriminate samples.</description><subject>antioxidant activities</subject><subject>antioxidants</subject><subject>Arbutus unedo</subject><subject>case studies</subject><subject>fruits</subject><subject>HPTLC</subject><subject>LC–HRMS</subject><subject>leaves</subject><subject>mass spectrometry</subject><subject>metabolomics</subject><subject>PCA</subject><subject>principal component analysis</subject><subject>provenance</subject><subject>Sardinia</subject><subject>secondary metabolites</subject><subject>thin layer chromatography</subject><subject>tissues</subject><issn>2304-8158</issn><issn>2304-8158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkktvEzEURkcIRKvQHWvkJQsG_BzbG6RoBKRSKiJa1pbHj8TVZBxsD6L_HtOUKl3VG1_5Hh35Xn1N8xbBj4RI-MnHaLOAAmJJXzTnmEDaCsTEy5P6rLnI-RbWIxERBL9uzggijHcEnzdutblZ9-2mX4I-7g-j27up6HQHSgSrH1fX950wgbJzoNfZgesy2zsQPVimYS5zBvPkbATLqYT4J1g9FbDZuSmOwYBNij6MYdq-aV55PWZ38XAvmp9fv9z0q3b9_dtlv1y3hgpSWsoRp5YaIXHHqWBGUwiRdL7rpOWDqYUeEOUOW8eMMJYwyJHVrnNeaE_Iork8em3Ut-qQwr6OoqIO6v4hpq3SqQQzOsU9tbpDgkjJKNZ08J4R1nlujTSS6er6fHQd5mHvrKl7SXp8In3amcJObeNv1XFMWBUvmvcPghR_zS4XtQ_ZuHHUk4tzVphUjFBK6PNo3QdEFEte0Q9H1KSYc3L-8UcIqn-ZUKeZqPi70yke4f8JIH8BiJ6x_w</recordid><startdate>20190727</startdate><enddate>20190727</enddate><creator>Maldini, Mariateresa</creator><creator>D'Urso, Gilda</creator><creator>Pagliuca, Giordana</creator><creator>Petretto, Giacomo Luigi</creator><creator>Foddai, Marzia</creator><creator>Gallo, Francesca Romana</creator><creator>Multari, Giuseppina</creator><creator>Caruso, Donatella</creator><creator>Montoro, Paola</creator><creator>Pintore, Giorgio</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9528-5632</orcidid><orcidid>https://orcid.org/0000-0002-2576-626X</orcidid><orcidid>https://orcid.org/0000-0001-9445-6006</orcidid></search><sort><creationdate>20190727</creationdate><title>HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling</title><author>Maldini, Mariateresa ; D'Urso, Gilda ; Pagliuca, Giordana ; Petretto, Giacomo Luigi ; Foddai, Marzia ; Gallo, Francesca Romana ; Multari, Giuseppina ; Caruso, Donatella ; Montoro, Paola ; Pintore, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>antioxidant activities</topic><topic>antioxidants</topic><topic>Arbutus unedo</topic><topic>case studies</topic><topic>fruits</topic><topic>HPTLC</topic><topic>LC–HRMS</topic><topic>leaves</topic><topic>mass spectrometry</topic><topic>metabolomics</topic><topic>PCA</topic><topic>principal component analysis</topic><topic>provenance</topic><topic>Sardinia</topic><topic>secondary metabolites</topic><topic>thin layer chromatography</topic><topic>tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maldini, Mariateresa</creatorcontrib><creatorcontrib>D'Urso, Gilda</creatorcontrib><creatorcontrib>Pagliuca, Giordana</creatorcontrib><creatorcontrib>Petretto, Giacomo Luigi</creatorcontrib><creatorcontrib>Foddai, Marzia</creatorcontrib><creatorcontrib>Gallo, Francesca Romana</creatorcontrib><creatorcontrib>Multari, Giuseppina</creatorcontrib><creatorcontrib>Caruso, Donatella</creatorcontrib><creatorcontrib>Montoro, Paola</creatorcontrib><creatorcontrib>Pintore, Giorgio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Foods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maldini, Mariateresa</au><au>D'Urso, Gilda</au><au>Pagliuca, Giordana</au><au>Petretto, Giacomo Luigi</au><au>Foddai, Marzia</au><au>Gallo, Francesca Romana</au><au>Multari, Giuseppina</au><au>Caruso, Donatella</au><au>Montoro, Paola</au><au>Pintore, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling</atitle><jtitle>Foods</jtitle><addtitle>Foods</addtitle><date>2019-07-27</date><risdate>2019</risdate><volume>8</volume><issue>8</issue><spage>294</spage><pages>294-</pages><issn>2304-8158</issn><eissn>2304-8158</eissn><abstract>A comparison between High-Performance Thin-Layer Chromatography (HPTLC) analysis and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), coupled with Principal Component Analysis (PCA) was carried out by performing a combined metabolomics study to discriminate
(
) plants. For a rapid digital record of
extracts (leaves, yellow fruit, and red fruit collected in La Maddalena and Sassari, Sardinia), HPTLC was used. Data were then analysed by PCA with the results of the ability of this technique to discriminate samples. Similarly, extracts were acquired by non-targeted LC-HRMS followed by unsupervised PCA, and then by LC-HRMS (MS) to identify secondary metabolites involved in the differentiation of the samples. As a result, we demonstrated that HPTLC may be applied as a simple and reliable untargeted approach to rapidly discriminate extracts based on tissues and/or geographical origins, while LC-HRMS could be used to identify which metabolites are able to discriminate samples.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>31357632</pmid><doi>10.3390/foods8080294</doi><orcidid>https://orcid.org/0000-0001-9528-5632</orcidid><orcidid>https://orcid.org/0000-0002-2576-626X</orcidid><orcidid>https://orcid.org/0000-0001-9445-6006</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2304-8158 |
ispartof | Foods, 2019-07, Vol.8 (8), p.294 |
issn | 2304-8158 2304-8158 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7f4da618399542a4bff5356f7dc9c95a |
source | PubMed Central |
subjects | antioxidant activities antioxidants Arbutus unedo case studies fruits HPTLC LC–HRMS leaves mass spectrometry metabolomics PCA principal component analysis provenance Sardinia secondary metabolites thin layer chromatography tissues |
title | HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HPTLC-PCA%20Complementary%20to%20HRMS-PCA%20in%20the%20Case%20Study%20of%20Arbutus%20unedo%20Antioxidant%20Phenolic%20Profiling&rft.jtitle=Foods&rft.au=Maldini,%20Mariateresa&rft.date=2019-07-27&rft.volume=8&rft.issue=8&rft.spage=294&rft.pages=294-&rft.issn=2304-8158&rft.eissn=2304-8158&rft_id=info:doi/10.3390/foods8080294&rft_dat=%3Cproquest_doaj_%3E2335134434%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-47174d4c89267485ca40019ef669d7bcef6ab147e2de5c8cd35071dae6ef8af33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267014297&rft_id=info:pmid/31357632&rfr_iscdi=true |