Loading…

Posterior Cramér–Rao lower bounds for extended target tracking with PMBM conjugate recursion

This letter considers the posterior Cramér–Rao lower bounds (PCRLB) problem for extended target tracking from a stack of measurement data that are modelled as random variables in the random finite sets framework. The scalars in the traditional PCRLB are converted into vectors based on random finite...

Full description

Saved in:
Bibliographic Details
Published in:Electronics letters 2024-09, Vol.60 (18), p.n/a
Main Authors: Xie, Xingxiang, Zhao, Xiongwei, Song, Zhumei, Li, Kening
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2641-9bf94633083cef99a9cf2e0888f0a364998f1137cc521e64df60524bda7156913
container_end_page n/a
container_issue 18
container_start_page
container_title Electronics letters
container_volume 60
creator Xie, Xingxiang
Zhao, Xiongwei
Song, Zhumei
Li, Kening
description This letter considers the posterior Cramér–Rao lower bounds (PCRLB) problem for extended target tracking from a stack of measurement data that are modelled as random variables in the random finite sets framework. The scalars in the traditional PCRLB are converted into vectors based on random finite sets to derive a theoretical lower bound. In this way, the proposed method can be applied to the multi‐target tracking problem and accommodates scenarios with targets of varying. Moreover, solving the data association problem from four parts caused by the conjugate update of the Poisson multi‐Bernoulli mixture filter is considered. Simulation results are presented to verify the effectiveness of the derived PCRLB. A posterior Cramér–Rao lower bounds based on Poisson multi‐Bernoulli mixture conjugate recursion is derived in this letter, considering four cases for data association: PPP intensity update for undetected targets, multi‐Bernoulli mixture update for newly detected targets, missed detection update in multi‐Bernoulli mixture recursion, and update of previously potentially detected targets. This approach effectively handles targets' variations in complex extended target tracking problems, as verified by simulations.
doi_str_mv 10.1049/ell2.70041
format article
fullrecord <record><control><sourceid>wiley_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7f57edcd9a0d48fd8552e330a9887ae5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f57edcd9a0d48fd8552e330a9887ae5</doaj_id><sourcerecordid>ELL270041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2641-9bf94633083cef99a9cf2e0888f0a364998f1137cc521e64df60524bda7156913</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqWw4QReIwXsxE7sJVQFKqWiQiCxs1x7HFLSGDmpSnfcgVNwDm7CSUgbxJLVaGbevJE-QqeUnFPC5AVUVXyeEcLoHhrQhJNIUvq0jwaE0CTiVLJDdNQ0i66NpcwGSM1800IofcCjoJdfn-H7_eNee1z5NQQ896vaNth1a3hrobZgcatDAS1ugzYvZV3gddk-49n0aoqNrxerQreAA5hVaEpfH6MDp6sGTn7rED1ejx9Gt1F-dzMZXeaRiVNGIzl3kqVJQkRiwEmppXExECGEIzpJmZTCUZpkxvCYQsqsSwmP2dzqjPJU0mSIJr3Xer1Qr6Fc6rBRXpdqN_ChUDq0palAZY5nYI2VmlgmnBWcx9C91lKITAPvXGe9ywTfNAHcn48StY1ZbWNWu5g7mPbwuqxg8w-pxnke9zc_zDuBPA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Posterior Cramér–Rao lower bounds for extended target tracking with PMBM conjugate recursion</title><source>IET Digital Library</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Xie, Xingxiang ; Zhao, Xiongwei ; Song, Zhumei ; Li, Kening</creator><creatorcontrib>Xie, Xingxiang ; Zhao, Xiongwei ; Song, Zhumei ; Li, Kening</creatorcontrib><description>This letter considers the posterior Cramér–Rao lower bounds (PCRLB) problem for extended target tracking from a stack of measurement data that are modelled as random variables in the random finite sets framework. The scalars in the traditional PCRLB are converted into vectors based on random finite sets to derive a theoretical lower bound. In this way, the proposed method can be applied to the multi‐target tracking problem and accommodates scenarios with targets of varying. Moreover, solving the data association problem from four parts caused by the conjugate update of the Poisson multi‐Bernoulli mixture filter is considered. Simulation results are presented to verify the effectiveness of the derived PCRLB. A posterior Cramér–Rao lower bounds based on Poisson multi‐Bernoulli mixture conjugate recursion is derived in this letter, considering four cases for data association: PPP intensity update for undetected targets, multi‐Bernoulli mixture update for newly detected targets, missed detection update in multi‐Bernoulli mixture recursion, and update of previously potentially detected targets. This approach effectively handles targets' variations in complex extended target tracking problems, as verified by simulations.</description><identifier>ISSN: 0013-5194</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/ell2.70041</identifier><language>eng</language><publisher>Wiley</publisher><subject>signal processing ; tracking ; tracking filters</subject><ispartof>Electronics letters, 2024-09, Vol.60 (18), p.n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2641-9bf94633083cef99a9cf2e0888f0a364998f1137cc521e64df60524bda7156913</cites><orcidid>0000-0002-7805-6608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fell2.70041$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fell2.70041$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Xie, Xingxiang</creatorcontrib><creatorcontrib>Zhao, Xiongwei</creatorcontrib><creatorcontrib>Song, Zhumei</creatorcontrib><creatorcontrib>Li, Kening</creatorcontrib><title>Posterior Cramér–Rao lower bounds for extended target tracking with PMBM conjugate recursion</title><title>Electronics letters</title><description>This letter considers the posterior Cramér–Rao lower bounds (PCRLB) problem for extended target tracking from a stack of measurement data that are modelled as random variables in the random finite sets framework. The scalars in the traditional PCRLB are converted into vectors based on random finite sets to derive a theoretical lower bound. In this way, the proposed method can be applied to the multi‐target tracking problem and accommodates scenarios with targets of varying. Moreover, solving the data association problem from four parts caused by the conjugate update of the Poisson multi‐Bernoulli mixture filter is considered. Simulation results are presented to verify the effectiveness of the derived PCRLB. A posterior Cramér–Rao lower bounds based on Poisson multi‐Bernoulli mixture conjugate recursion is derived in this letter, considering four cases for data association: PPP intensity update for undetected targets, multi‐Bernoulli mixture update for newly detected targets, missed detection update in multi‐Bernoulli mixture recursion, and update of previously potentially detected targets. This approach effectively handles targets' variations in complex extended target tracking problems, as verified by simulations.</description><subject>signal processing</subject><subject>tracking</subject><subject>tracking filters</subject><issn>0013-5194</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kEFOwzAQRS0EEqWw4QReIwXsxE7sJVQFKqWiQiCxs1x7HFLSGDmpSnfcgVNwDm7CSUgbxJLVaGbevJE-QqeUnFPC5AVUVXyeEcLoHhrQhJNIUvq0jwaE0CTiVLJDdNQ0i66NpcwGSM1800IofcCjoJdfn-H7_eNee1z5NQQ896vaNth1a3hrobZgcatDAS1ugzYvZV3gddk-49n0aoqNrxerQreAA5hVaEpfH6MDp6sGTn7rED1ejx9Gt1F-dzMZXeaRiVNGIzl3kqVJQkRiwEmppXExECGEIzpJmZTCUZpkxvCYQsqsSwmP2dzqjPJU0mSIJr3Xer1Qr6Fc6rBRXpdqN_ChUDq0palAZY5nYI2VmlgmnBWcx9C91lKITAPvXGe9ywTfNAHcn48StY1ZbWNWu5g7mPbwuqxg8w-pxnke9zc_zDuBPA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Xie, Xingxiang</creator><creator>Zhao, Xiongwei</creator><creator>Song, Zhumei</creator><creator>Li, Kening</creator><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7805-6608</orcidid></search><sort><creationdate>202409</creationdate><title>Posterior Cramér–Rao lower bounds for extended target tracking with PMBM conjugate recursion</title><author>Xie, Xingxiang ; Zhao, Xiongwei ; Song, Zhumei ; Li, Kening</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2641-9bf94633083cef99a9cf2e0888f0a364998f1137cc521e64df60524bda7156913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>signal processing</topic><topic>tracking</topic><topic>tracking filters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xingxiang</creatorcontrib><creatorcontrib>Zhao, Xiongwei</creatorcontrib><creatorcontrib>Song, Zhumei</creatorcontrib><creatorcontrib>Li, Kening</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Journals</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xingxiang</au><au>Zhao, Xiongwei</au><au>Song, Zhumei</au><au>Li, Kening</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Posterior Cramér–Rao lower bounds for extended target tracking with PMBM conjugate recursion</atitle><jtitle>Electronics letters</jtitle><date>2024-09</date><risdate>2024</risdate><volume>60</volume><issue>18</issue><epage>n/a</epage><issn>0013-5194</issn><eissn>1350-911X</eissn><abstract>This letter considers the posterior Cramér–Rao lower bounds (PCRLB) problem for extended target tracking from a stack of measurement data that are modelled as random variables in the random finite sets framework. The scalars in the traditional PCRLB are converted into vectors based on random finite sets to derive a theoretical lower bound. In this way, the proposed method can be applied to the multi‐target tracking problem and accommodates scenarios with targets of varying. Moreover, solving the data association problem from four parts caused by the conjugate update of the Poisson multi‐Bernoulli mixture filter is considered. Simulation results are presented to verify the effectiveness of the derived PCRLB. A posterior Cramér–Rao lower bounds based on Poisson multi‐Bernoulli mixture conjugate recursion is derived in this letter, considering four cases for data association: PPP intensity update for undetected targets, multi‐Bernoulli mixture update for newly detected targets, missed detection update in multi‐Bernoulli mixture recursion, and update of previously potentially detected targets. This approach effectively handles targets' variations in complex extended target tracking problems, as verified by simulations.</abstract><pub>Wiley</pub><doi>10.1049/ell2.70041</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-7805-6608</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-5194
ispartof Electronics letters, 2024-09, Vol.60 (18), p.n/a
issn 0013-5194
1350-911X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7f57edcd9a0d48fd8552e330a9887ae5
source IET Digital Library; Open Access: Wiley-Blackwell Open Access Journals
subjects signal processing
tracking
tracking filters
title Posterior Cramér–Rao lower bounds for extended target tracking with PMBM conjugate recursion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Posterior%20Cram%C3%A9r%E2%80%93Rao%20lower%20bounds%20for%20extended%20target%20tracking%20with%20PMBM%20conjugate%20recursion&rft.jtitle=Electronics%20letters&rft.au=Xie,%20Xingxiang&rft.date=2024-09&rft.volume=60&rft.issue=18&rft.epage=n/a&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/ell2.70041&rft_dat=%3Cwiley_doaj_%3EELL270041%3C/wiley_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2641-9bf94633083cef99a9cf2e0888f0a364998f1137cc521e64df60524bda7156913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true