Loading…
Cooling jug physics
We discuss the physics of the pot-in-pot cooler. By balancing temperature decrease due to evaporation and temperature increase due to heat exchange, we find the equilibrium temperature of the pot. In this simplified model, the cooling jug acts as a psychrometer, and the theoretical prediction of our...
Saved in:
Published in: | Emergent scientist 2017, Vol.1, p.5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3 |
container_end_page | |
container_issue | |
container_start_page | 5 |
container_title | Emergent scientist |
container_volume | 1 |
creator | Luniachek, Oleh Timchenko, Ruslan Golubov, Oleksiy |
description | We discuss the physics of the pot-in-pot cooler. By balancing temperature decrease due to evaporation and temperature increase due to heat exchange, we find the equilibrium temperature of the pot. In this simplified model, the cooling jug acts as a psychrometer, and the theoretical prediction of our model is in a good agreement with psychrometric tables. Next, we study dynamics of the jug cooling. The cooling rate is limited by water vapour diffusion through air, heat conduction through air, and heat conduction through the body of the jug. The derived rate of temperature decrease is in general agreement with the result of our experiment. In the end, we discuss some additional factors, such as capillary effects in the raw clay, water viscosity in the capillaries, and impact of complex shape of the jug. |
doi_str_mv | 10.1051/emsci/2017005 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7f7dc8189a0e468094ea44b575888fa4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f7dc8189a0e468094ea44b575888fa4</doaj_id><sourcerecordid>2567915783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3</originalsourceid><addsrcrecordid>eNpNkEtLQzEQhYMoWGpX4r7g-tpJcvOYpRQfhYIbXYfcPOq9tE1N2kX_vbEVcTMzHA7fHA4hdxQeKAg6C5vi-hkDqgDEBRkxIWSjlcLLf_c1mZQyAABTyAXjI3I7T2ndb1fT4bCa7j6PpXflhlxFuy5h8rvH5OP56X3-2izfXhbzx2XjGBWiUUJLRM91BOYi8z54FNJzhVID8A7qdM4p6gVabLELsg22Q60jBhk7PiaLM9cnO5hd7jc2H02yvTkJKa-MzfverYNRUXmnqUYLoa14rKS27UTNUHG2raz7M2uX09chlL0Z0iFva3zDhFRIhdK8upqzy-VUSg7x7ysF81OjOdVofmvk3yYqYpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2567915783</pqid></control><display><type>article</type><title>Cooling jug physics</title><source>Publicly Available Content Database</source><creator>Luniachek, Oleh ; Timchenko, Ruslan ; Golubov, Oleksiy</creator><creatorcontrib>Luniachek, Oleh ; Timchenko, Ruslan ; Golubov, Oleksiy</creatorcontrib><description>We discuss the physics of the pot-in-pot cooler. By balancing temperature decrease due to evaporation and temperature increase due to heat exchange, we find the equilibrium temperature of the pot. In this simplified model, the cooling jug acts as a psychrometer, and the theoretical prediction of our model is in a good agreement with psychrometric tables. Next, we study dynamics of the jug cooling. The cooling rate is limited by water vapour diffusion through air, heat conduction through air, and heat conduction through the body of the jug. The derived rate of temperature decrease is in general agreement with the result of our experiment. In the end, we discuss some additional factors, such as capillary effects in the raw clay, water viscosity in the capillaries, and impact of complex shape of the jug.</description><identifier>ISSN: 2556-8779</identifier><identifier>EISSN: 2556-8779</identifier><identifier>DOI: 10.1051/emsci/2017005</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Approximation ; Cooling ; Equilibrium ; Evaporation ; Food ; Geometry ; Heat conductivity ; Heat exchange ; Humidity ; phase transitions ; physical kinetics ; Physics ; Temperature ; Water vapor</subject><ispartof>Emergent scientist, 2017, Vol.1, p.5</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3</citedby><cites>FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3</cites><orcidid>0000-0002-2952-7899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2567915783/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2567915783?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Luniachek, Oleh</creatorcontrib><creatorcontrib>Timchenko, Ruslan</creatorcontrib><creatorcontrib>Golubov, Oleksiy</creatorcontrib><title>Cooling jug physics</title><title>Emergent scientist</title><description>We discuss the physics of the pot-in-pot cooler. By balancing temperature decrease due to evaporation and temperature increase due to heat exchange, we find the equilibrium temperature of the pot. In this simplified model, the cooling jug acts as a psychrometer, and the theoretical prediction of our model is in a good agreement with psychrometric tables. Next, we study dynamics of the jug cooling. The cooling rate is limited by water vapour diffusion through air, heat conduction through air, and heat conduction through the body of the jug. The derived rate of temperature decrease is in general agreement with the result of our experiment. In the end, we discuss some additional factors, such as capillary effects in the raw clay, water viscosity in the capillaries, and impact of complex shape of the jug.</description><subject>Approximation</subject><subject>Cooling</subject><subject>Equilibrium</subject><subject>Evaporation</subject><subject>Food</subject><subject>Geometry</subject><subject>Heat conductivity</subject><subject>Heat exchange</subject><subject>Humidity</subject><subject>phase transitions</subject><subject>physical kinetics</subject><subject>Physics</subject><subject>Temperature</subject><subject>Water vapor</subject><issn>2556-8779</issn><issn>2556-8779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEtLQzEQhYMoWGpX4r7g-tpJcvOYpRQfhYIbXYfcPOq9tE1N2kX_vbEVcTMzHA7fHA4hdxQeKAg6C5vi-hkDqgDEBRkxIWSjlcLLf_c1mZQyAABTyAXjI3I7T2ndb1fT4bCa7j6PpXflhlxFuy5h8rvH5OP56X3-2izfXhbzx2XjGBWiUUJLRM91BOYi8z54FNJzhVID8A7qdM4p6gVabLELsg22Q60jBhk7PiaLM9cnO5hd7jc2H02yvTkJKa-MzfverYNRUXmnqUYLoa14rKS27UTNUHG2raz7M2uX09chlL0Z0iFva3zDhFRIhdK8upqzy-VUSg7x7ysF81OjOdVofmvk3yYqYpQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Luniachek, Oleh</creator><creator>Timchenko, Ruslan</creator><creator>Golubov, Oleksiy</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2952-7899</orcidid></search><sort><creationdate>2017</creationdate><title>Cooling jug physics</title><author>Luniachek, Oleh ; Timchenko, Ruslan ; Golubov, Oleksiy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Cooling</topic><topic>Equilibrium</topic><topic>Evaporation</topic><topic>Food</topic><topic>Geometry</topic><topic>Heat conductivity</topic><topic>Heat exchange</topic><topic>Humidity</topic><topic>phase transitions</topic><topic>physical kinetics</topic><topic>Physics</topic><topic>Temperature</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luniachek, Oleh</creatorcontrib><creatorcontrib>Timchenko, Ruslan</creatorcontrib><creatorcontrib>Golubov, Oleksiy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>TestCollectionTL3OpenAccess</collection><jtitle>Emergent scientist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luniachek, Oleh</au><au>Timchenko, Ruslan</au><au>Golubov, Oleksiy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooling jug physics</atitle><jtitle>Emergent scientist</jtitle><date>2017</date><risdate>2017</risdate><volume>1</volume><spage>5</spage><pages>5-</pages><issn>2556-8779</issn><eissn>2556-8779</eissn><abstract>We discuss the physics of the pot-in-pot cooler. By balancing temperature decrease due to evaporation and temperature increase due to heat exchange, we find the equilibrium temperature of the pot. In this simplified model, the cooling jug acts as a psychrometer, and the theoretical prediction of our model is in a good agreement with psychrometric tables. Next, we study dynamics of the jug cooling. The cooling rate is limited by water vapour diffusion through air, heat conduction through air, and heat conduction through the body of the jug. The derived rate of temperature decrease is in general agreement with the result of our experiment. In the end, we discuss some additional factors, such as capillary effects in the raw clay, water viscosity in the capillaries, and impact of complex shape of the jug.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/emsci/2017005</doi><orcidid>https://orcid.org/0000-0002-2952-7899</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2556-8779 |
ispartof | Emergent scientist, 2017, Vol.1, p.5 |
issn | 2556-8779 2556-8779 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7f7dc8189a0e468094ea44b575888fa4 |
source | Publicly Available Content Database |
subjects | Approximation Cooling Equilibrium Evaporation Food Geometry Heat conductivity Heat exchange Humidity phase transitions physical kinetics Physics Temperature Water vapor |
title | Cooling jug physics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooling%20jug%20physics&rft.jtitle=Emergent%20scientist&rft.au=Luniachek,%20Oleh&rft.date=2017&rft.volume=1&rft.spage=5&rft.pages=5-&rft.issn=2556-8779&rft.eissn=2556-8779&rft_id=info:doi/10.1051/emsci/2017005&rft_dat=%3Cproquest_doaj_%3E2567915783%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2567915783&rft_id=info:pmid/&rfr_iscdi=true |