Loading…

Cooling jug physics

We discuss the physics of the pot-in-pot cooler. By balancing temperature decrease due to evaporation and temperature increase due to heat exchange, we find the equilibrium temperature of the pot. In this simplified model, the cooling jug acts as a psychrometer, and the theoretical prediction of our...

Full description

Saved in:
Bibliographic Details
Published in:Emergent scientist 2017, Vol.1, p.5
Main Authors: Luniachek, Oleh, Timchenko, Ruslan, Golubov, Oleksiy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3
cites cdi_FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3
container_end_page
container_issue
container_start_page 5
container_title Emergent scientist
container_volume 1
creator Luniachek, Oleh
Timchenko, Ruslan
Golubov, Oleksiy
description We discuss the physics of the pot-in-pot cooler. By balancing temperature decrease due to evaporation and temperature increase due to heat exchange, we find the equilibrium temperature of the pot. In this simplified model, the cooling jug acts as a psychrometer, and the theoretical prediction of our model is in a good agreement with psychrometric tables. Next, we study dynamics of the jug cooling. The cooling rate is limited by water vapour diffusion through air, heat conduction through air, and heat conduction through the body of the jug. The derived rate of temperature decrease is in general agreement with the result of our experiment. In the end, we discuss some additional factors, such as capillary effects in the raw clay, water viscosity in the capillaries, and impact of complex shape of the jug.
doi_str_mv 10.1051/emsci/2017005
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7f7dc8189a0e468094ea44b575888fa4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f7dc8189a0e468094ea44b575888fa4</doaj_id><sourcerecordid>2567915783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3</originalsourceid><addsrcrecordid>eNpNkEtLQzEQhYMoWGpX4r7g-tpJcvOYpRQfhYIbXYfcPOq9tE1N2kX_vbEVcTMzHA7fHA4hdxQeKAg6C5vi-hkDqgDEBRkxIWSjlcLLf_c1mZQyAABTyAXjI3I7T2ndb1fT4bCa7j6PpXflhlxFuy5h8rvH5OP56X3-2izfXhbzx2XjGBWiUUJLRM91BOYi8z54FNJzhVID8A7qdM4p6gVabLELsg22Q60jBhk7PiaLM9cnO5hd7jc2H02yvTkJKa-MzfverYNRUXmnqUYLoa14rKS27UTNUHG2raz7M2uX09chlL0Z0iFva3zDhFRIhdK8upqzy-VUSg7x7ysF81OjOdVofmvk3yYqYpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2567915783</pqid></control><display><type>article</type><title>Cooling jug physics</title><source>Publicly Available Content Database</source><creator>Luniachek, Oleh ; Timchenko, Ruslan ; Golubov, Oleksiy</creator><creatorcontrib>Luniachek, Oleh ; Timchenko, Ruslan ; Golubov, Oleksiy</creatorcontrib><description>We discuss the physics of the pot-in-pot cooler. By balancing temperature decrease due to evaporation and temperature increase due to heat exchange, we find the equilibrium temperature of the pot. In this simplified model, the cooling jug acts as a psychrometer, and the theoretical prediction of our model is in a good agreement with psychrometric tables. Next, we study dynamics of the jug cooling. The cooling rate is limited by water vapour diffusion through air, heat conduction through air, and heat conduction through the body of the jug. The derived rate of temperature decrease is in general agreement with the result of our experiment. In the end, we discuss some additional factors, such as capillary effects in the raw clay, water viscosity in the capillaries, and impact of complex shape of the jug.</description><identifier>ISSN: 2556-8779</identifier><identifier>EISSN: 2556-8779</identifier><identifier>DOI: 10.1051/emsci/2017005</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Approximation ; Cooling ; Equilibrium ; Evaporation ; Food ; Geometry ; Heat conductivity ; Heat exchange ; Humidity ; phase transitions ; physical kinetics ; Physics ; Temperature ; Water vapor</subject><ispartof>Emergent scientist, 2017, Vol.1, p.5</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3</citedby><cites>FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3</cites><orcidid>0000-0002-2952-7899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2567915783/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2567915783?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Luniachek, Oleh</creatorcontrib><creatorcontrib>Timchenko, Ruslan</creatorcontrib><creatorcontrib>Golubov, Oleksiy</creatorcontrib><title>Cooling jug physics</title><title>Emergent scientist</title><description>We discuss the physics of the pot-in-pot cooler. By balancing temperature decrease due to evaporation and temperature increase due to heat exchange, we find the equilibrium temperature of the pot. In this simplified model, the cooling jug acts as a psychrometer, and the theoretical prediction of our model is in a good agreement with psychrometric tables. Next, we study dynamics of the jug cooling. The cooling rate is limited by water vapour diffusion through air, heat conduction through air, and heat conduction through the body of the jug. The derived rate of temperature decrease is in general agreement with the result of our experiment. In the end, we discuss some additional factors, such as capillary effects in the raw clay, water viscosity in the capillaries, and impact of complex shape of the jug.</description><subject>Approximation</subject><subject>Cooling</subject><subject>Equilibrium</subject><subject>Evaporation</subject><subject>Food</subject><subject>Geometry</subject><subject>Heat conductivity</subject><subject>Heat exchange</subject><subject>Humidity</subject><subject>phase transitions</subject><subject>physical kinetics</subject><subject>Physics</subject><subject>Temperature</subject><subject>Water vapor</subject><issn>2556-8779</issn><issn>2556-8779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEtLQzEQhYMoWGpX4r7g-tpJcvOYpRQfhYIbXYfcPOq9tE1N2kX_vbEVcTMzHA7fHA4hdxQeKAg6C5vi-hkDqgDEBRkxIWSjlcLLf_c1mZQyAABTyAXjI3I7T2ndb1fT4bCa7j6PpXflhlxFuy5h8rvH5OP56X3-2izfXhbzx2XjGBWiUUJLRM91BOYi8z54FNJzhVID8A7qdM4p6gVabLELsg22Q60jBhk7PiaLM9cnO5hd7jc2H02yvTkJKa-MzfverYNRUXmnqUYLoa14rKS27UTNUHG2raz7M2uX09chlL0Z0iFva3zDhFRIhdK8upqzy-VUSg7x7ysF81OjOdVofmvk3yYqYpQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Luniachek, Oleh</creator><creator>Timchenko, Ruslan</creator><creator>Golubov, Oleksiy</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2952-7899</orcidid></search><sort><creationdate>2017</creationdate><title>Cooling jug physics</title><author>Luniachek, Oleh ; Timchenko, Ruslan ; Golubov, Oleksiy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Cooling</topic><topic>Equilibrium</topic><topic>Evaporation</topic><topic>Food</topic><topic>Geometry</topic><topic>Heat conductivity</topic><topic>Heat exchange</topic><topic>Humidity</topic><topic>phase transitions</topic><topic>physical kinetics</topic><topic>Physics</topic><topic>Temperature</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luniachek, Oleh</creatorcontrib><creatorcontrib>Timchenko, Ruslan</creatorcontrib><creatorcontrib>Golubov, Oleksiy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>TestCollectionTL3OpenAccess</collection><jtitle>Emergent scientist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luniachek, Oleh</au><au>Timchenko, Ruslan</au><au>Golubov, Oleksiy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooling jug physics</atitle><jtitle>Emergent scientist</jtitle><date>2017</date><risdate>2017</risdate><volume>1</volume><spage>5</spage><pages>5-</pages><issn>2556-8779</issn><eissn>2556-8779</eissn><abstract>We discuss the physics of the pot-in-pot cooler. By balancing temperature decrease due to evaporation and temperature increase due to heat exchange, we find the equilibrium temperature of the pot. In this simplified model, the cooling jug acts as a psychrometer, and the theoretical prediction of our model is in a good agreement with psychrometric tables. Next, we study dynamics of the jug cooling. The cooling rate is limited by water vapour diffusion through air, heat conduction through air, and heat conduction through the body of the jug. The derived rate of temperature decrease is in general agreement with the result of our experiment. In the end, we discuss some additional factors, such as capillary effects in the raw clay, water viscosity in the capillaries, and impact of complex shape of the jug.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/emsci/2017005</doi><orcidid>https://orcid.org/0000-0002-2952-7899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2556-8779
ispartof Emergent scientist, 2017, Vol.1, p.5
issn 2556-8779
2556-8779
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7f7dc8189a0e468094ea44b575888fa4
source Publicly Available Content Database
subjects Approximation
Cooling
Equilibrium
Evaporation
Food
Geometry
Heat conductivity
Heat exchange
Humidity
phase transitions
physical kinetics
Physics
Temperature
Water vapor
title Cooling jug physics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooling%20jug%20physics&rft.jtitle=Emergent%20scientist&rft.au=Luniachek,%20Oleh&rft.date=2017&rft.volume=1&rft.spage=5&rft.pages=5-&rft.issn=2556-8779&rft.eissn=2556-8779&rft_id=info:doi/10.1051/emsci/2017005&rft_dat=%3Cproquest_doaj_%3E2567915783%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2155-758699d38f02cf2dded956d37968003b0800ccc71d59a949be64eab988f9e6fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2567915783&rft_id=info:pmid/&rfr_iscdi=true