Loading…

Identifying the density of grassland fire points with kernel density estimation based on spatial distribution characteristics

Understanding the risk of grassland fire occurrence associated with historical fire point events is critical for implementing effective management of grasslands. This may require a model to convert the fire point records into continuous spatial distribution data. Kernel density estimation (KDE) can...

Full description

Saved in:
Bibliographic Details
Published in:Open Geosciences 2021-07, Vol.13 (1), p.796-806
Main Authors: Shuo, Zhen, Jingyu, Zhang, Zhengxiang, Zhang, Jianjun, Zhao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-394f1bb6727b5f4043487acc8432d6241aa30afca9b3224e494999c387d200773
cites cdi_FETCH-LOGICAL-c422t-394f1bb6727b5f4043487acc8432d6241aa30afca9b3224e494999c387d200773
container_end_page 806
container_issue 1
container_start_page 796
container_title Open Geosciences
container_volume 13
creator Shuo, Zhen
Jingyu, Zhang
Zhengxiang, Zhang
Jianjun, Zhao
description Understanding the risk of grassland fire occurrence associated with historical fire point events is critical for implementing effective management of grasslands. This may require a model to convert the fire point records into continuous spatial distribution data. Kernel density estimation (KDE) can be used to represent the spatial distribution of grassland fire occurrences and decrease the influences historical records in point format with inaccurate positions. The bandwidth is the most important parameter because it dominates the amount of variation in the estimation of KDE. In this study, the spatial distribution characteristic of the points was considered to determine the bandwidth of KDE with the Ripley’s K function method. With high, medium, and low concentration scenes of grassland fire points, kernel density surfaces were produced by using the kernel function with four bandwidth parameter selection methods. For acquiring the best maps, the estimated density surfaces were compared by mean integrated squared error methods. The results show that Ripley’s K function method is the best bandwidth selection method for mapping and analyzing the risk of grassland fire occurrence with the dependent or inaccurate point variable, considering the spatial distribution characteristics.
doi_str_mv 10.1515/geo-2020-0265
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7f8ebad269aa4162b6f5da608746abbd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f8ebad269aa4162b6f5da608746abbd</doaj_id><sourcerecordid>2618939823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-394f1bb6727b5f4043487acc8432d6241aa30afca9b3224e494999c387d200773</originalsourceid><addsrcrecordid>eNptUUFvFCEYnRhN2tQeeyfxPAofDAzxZBq1mzTxomfyMcAs6ziswKbZg_9dttvUHjzxeDze9-B13Q2j79nAhg-zTz1QoD0FObzqLoFr1g9CqNcv8EV3XcqOUsoGAQODy-7Pxvm1xnCM60zq1pO2LbEeSQpkzljKgqsjIWZP9imutZCHWLfkp8-rX57FvtT4C2tMK7FYvCMNlH0jsGliqTnaw-PptMWMU_W5kXEqb7s3AZfir5_Wq-7Hl8_fb-_6-29fN7ef7vtJANSeaxGYtVKBskMQVHAxKpymUXBwEgRD5BTDhNpyAOGFFlrriY_KAaVK8atuc_Z1CXdmn1vYfDQJo3kkUp4N5hZo8UaF0Vt0IDWiYBKsDINDSUclJFrrmte7s9c-p9-H9nKzS4e8tvgGJBs11yPwpurPqimnUrIPz1MZNafCTCvMnAozp8Ka_uNZ_4BL-x7n53w4NvDP_L_3GGdKS_4XpqCeKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618939823</pqid></control><display><type>article</type><title>Identifying the density of grassland fire points with kernel density estimation based on spatial distribution characteristics</title><source>ProQuest - Publicly Available Content Database</source><source>Walter De Gruyter: Open Access Journals</source><creator>Shuo, Zhen ; Jingyu, Zhang ; Zhengxiang, Zhang ; Jianjun, Zhao</creator><creatorcontrib>Shuo, Zhen ; Jingyu, Zhang ; Zhengxiang, Zhang ; Jianjun, Zhao</creatorcontrib><description>Understanding the risk of grassland fire occurrence associated with historical fire point events is critical for implementing effective management of grasslands. This may require a model to convert the fire point records into continuous spatial distribution data. Kernel density estimation (KDE) can be used to represent the spatial distribution of grassland fire occurrences and decrease the influences historical records in point format with inaccurate positions. The bandwidth is the most important parameter because it dominates the amount of variation in the estimation of KDE. In this study, the spatial distribution characteristic of the points was considered to determine the bandwidth of KDE with the Ripley’s K function method. With high, medium, and low concentration scenes of grassland fire points, kernel density surfaces were produced by using the kernel function with four bandwidth parameter selection methods. For acquiring the best maps, the estimated density surfaces were compared by mean integrated squared error methods. The results show that Ripley’s K function method is the best bandwidth selection method for mapping and analyzing the risk of grassland fire occurrence with the dependent or inaccurate point variable, considering the spatial distribution characteristics.</description><identifier>ISSN: 2391-5447</identifier><identifier>EISSN: 2391-5447</identifier><identifier>DOI: 10.1515/geo-2020-0265</identifier><language>eng</language><publisher>Warsaw: De Gruyter</publisher><subject>Bandwidths ; Density ; grassland fire ; Grassland management ; Grasslands ; Ripley’s K ; risk ; spatial cluster ; Spatial distribution</subject><ispartof>Open Geosciences, 2021-07, Vol.13 (1), p.796-806</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-394f1bb6727b5f4043487acc8432d6241aa30afca9b3224e494999c387d200773</citedby><cites>FETCH-LOGICAL-c422t-394f1bb6727b5f4043487acc8432d6241aa30afca9b3224e494999c387d200773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/geo-2020-0265/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2618939823?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,67158,68942</link.rule.ids></links><search><creatorcontrib>Shuo, Zhen</creatorcontrib><creatorcontrib>Jingyu, Zhang</creatorcontrib><creatorcontrib>Zhengxiang, Zhang</creatorcontrib><creatorcontrib>Jianjun, Zhao</creatorcontrib><title>Identifying the density of grassland fire points with kernel density estimation based on spatial distribution characteristics</title><title>Open Geosciences</title><description>Understanding the risk of grassland fire occurrence associated with historical fire point events is critical for implementing effective management of grasslands. This may require a model to convert the fire point records into continuous spatial distribution data. Kernel density estimation (KDE) can be used to represent the spatial distribution of grassland fire occurrences and decrease the influences historical records in point format with inaccurate positions. The bandwidth is the most important parameter because it dominates the amount of variation in the estimation of KDE. In this study, the spatial distribution characteristic of the points was considered to determine the bandwidth of KDE with the Ripley’s K function method. With high, medium, and low concentration scenes of grassland fire points, kernel density surfaces were produced by using the kernel function with four bandwidth parameter selection methods. For acquiring the best maps, the estimated density surfaces were compared by mean integrated squared error methods. The results show that Ripley’s K function method is the best bandwidth selection method for mapping and analyzing the risk of grassland fire occurrence with the dependent or inaccurate point variable, considering the spatial distribution characteristics.</description><subject>Bandwidths</subject><subject>Density</subject><subject>grassland fire</subject><subject>Grassland management</subject><subject>Grasslands</subject><subject>Ripley’s K</subject><subject>risk</subject><subject>spatial cluster</subject><subject>Spatial distribution</subject><issn>2391-5447</issn><issn>2391-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUUFvFCEYnRhN2tQeeyfxPAofDAzxZBq1mzTxomfyMcAs6ziswKbZg_9dttvUHjzxeDze9-B13Q2j79nAhg-zTz1QoD0FObzqLoFr1g9CqNcv8EV3XcqOUsoGAQODy-7Pxvm1xnCM60zq1pO2LbEeSQpkzljKgqsjIWZP9imutZCHWLfkp8-rX57FvtT4C2tMK7FYvCMNlH0jsGliqTnaw-PptMWMU_W5kXEqb7s3AZfir5_Wq-7Hl8_fb-_6-29fN7ef7vtJANSeaxGYtVKBskMQVHAxKpymUXBwEgRD5BTDhNpyAOGFFlrriY_KAaVK8atuc_Z1CXdmn1vYfDQJo3kkUp4N5hZo8UaF0Vt0IDWiYBKsDINDSUclJFrrmte7s9c-p9-H9nKzS4e8tvgGJBs11yPwpurPqimnUrIPz1MZNafCTCvMnAozp8Ka_uNZ_4BL-x7n53w4NvDP_L_3GGdKS_4XpqCeKQ</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Shuo, Zhen</creator><creator>Jingyu, Zhang</creator><creator>Zhengxiang, Zhang</creator><creator>Jianjun, Zhao</creator><general>De Gruyter</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20210721</creationdate><title>Identifying the density of grassland fire points with kernel density estimation based on spatial distribution characteristics</title><author>Shuo, Zhen ; Jingyu, Zhang ; Zhengxiang, Zhang ; Jianjun, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-394f1bb6727b5f4043487acc8432d6241aa30afca9b3224e494999c387d200773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bandwidths</topic><topic>Density</topic><topic>grassland fire</topic><topic>Grassland management</topic><topic>Grasslands</topic><topic>Ripley’s K</topic><topic>risk</topic><topic>spatial cluster</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shuo, Zhen</creatorcontrib><creatorcontrib>Jingyu, Zhang</creatorcontrib><creatorcontrib>Zhengxiang, Zhang</creatorcontrib><creatorcontrib>Jianjun, Zhao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Open Geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shuo, Zhen</au><au>Jingyu, Zhang</au><au>Zhengxiang, Zhang</au><au>Jianjun, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the density of grassland fire points with kernel density estimation based on spatial distribution characteristics</atitle><jtitle>Open Geosciences</jtitle><date>2021-07-21</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>796</spage><epage>806</epage><pages>796-806</pages><issn>2391-5447</issn><eissn>2391-5447</eissn><abstract>Understanding the risk of grassland fire occurrence associated with historical fire point events is critical for implementing effective management of grasslands. This may require a model to convert the fire point records into continuous spatial distribution data. Kernel density estimation (KDE) can be used to represent the spatial distribution of grassland fire occurrences and decrease the influences historical records in point format with inaccurate positions. The bandwidth is the most important parameter because it dominates the amount of variation in the estimation of KDE. In this study, the spatial distribution characteristic of the points was considered to determine the bandwidth of KDE with the Ripley’s K function method. With high, medium, and low concentration scenes of grassland fire points, kernel density surfaces were produced by using the kernel function with four bandwidth parameter selection methods. For acquiring the best maps, the estimated density surfaces were compared by mean integrated squared error methods. The results show that Ripley’s K function method is the best bandwidth selection method for mapping and analyzing the risk of grassland fire occurrence with the dependent or inaccurate point variable, considering the spatial distribution characteristics.</abstract><cop>Warsaw</cop><pub>De Gruyter</pub><doi>10.1515/geo-2020-0265</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2391-5447
ispartof Open Geosciences, 2021-07, Vol.13 (1), p.796-806
issn 2391-5447
2391-5447
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7f8ebad269aa4162b6f5da608746abbd
source ProQuest - Publicly Available Content Database; Walter De Gruyter: Open Access Journals
subjects Bandwidths
Density
grassland fire
Grassland management
Grasslands
Ripley’s K
risk
spatial cluster
Spatial distribution
title Identifying the density of grassland fire points with kernel density estimation based on spatial distribution characteristics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20density%20of%20grassland%20fire%20points%20with%20kernel%20density%20estimation%20based%20on%20spatial%20distribution%20characteristics&rft.jtitle=Open%20Geosciences&rft.au=Shuo,%20Zhen&rft.date=2021-07-21&rft.volume=13&rft.issue=1&rft.spage=796&rft.epage=806&rft.pages=796-806&rft.issn=2391-5447&rft.eissn=2391-5447&rft_id=info:doi/10.1515/geo-2020-0265&rft_dat=%3Cproquest_doaj_%3E2618939823%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-394f1bb6727b5f4043487acc8432d6241aa30afca9b3224e494999c387d200773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618939823&rft_id=info:pmid/&rfr_iscdi=true