Loading…
Unveiling of Concealed Processes for the Degradation of Pharmaceutical Compounds by Neopestalotiopsis sp
The presence of pharmaceutical products has raised emerging biorisks in aquatic environments. Fungi have been considered in sustainable approaches for the degradation of pharmaceutical compounds from aquatic environments. Soft rot fungi of the Ascomycota phylum are the most widely distributed among...
Saved in:
Published in: | Microorganisms (Basel) 2019-08, Vol.7 (8), p.264 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The presence of pharmaceutical products has raised emerging biorisks in aquatic environments. Fungi have been considered in sustainable approaches for the degradation of pharmaceutical compounds from aquatic environments. Soft rot fungi of the Ascomycota phylum are the most widely distributed among fungi, but their ability to biodegrade pharmaceuticals has not been studied as much as that of white rot fungi of the Basidiomycota phylum. Herein, we evaluated the capacity of the soft rot fungus
sp. B2B to degrade pharmaceuticals under treatment of woody and nonwoody lignocellulosic biomasses. Nonwoody rice straw induced laccase activity fivefold compared with that in YSM medium containing polysaccharide. But B2B preferentially degraded polysaccharide over lignin regions in woody sources, leading to high concentrations of sugar. Hence, intermediate products from saccharification may inhibit laccase activity and thereby halt the biodegradation of pharmaceutical compounds. These results provide fundamental insights into the unique characteristics of pharmaceutical degradation by soft rot fungus
sp. in the presence of preferred substrates during delignification. |
---|---|
ISSN: | 2076-2607 2076-2607 |
DOI: | 10.3390/microorganisms7080264 |