Loading…

RS2-Net: An end-to-end deep learning framework for rodent skull stripping in multi-center brain MRI

Skull stripping is a crucial preprocessing step in magnetic resonance imaging (MRI), where experts manually create brain masks. This labor-intensive process heavily relies on the annotator’s expertise, as automation faces challenges such as low tissue contrast, significant variations in image resolu...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2024-09, Vol.298, p.120769, Article 120769
Main Authors: Lin, Yongkang, Ding, Yanhui, Chang, Shulei, Ge, Xinting, Sui, Xiaodan, Jiang, Yanyun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 120769
container_title NeuroImage (Orlando, Fla.)
container_volume 298
creator Lin, Yongkang
Ding, Yanhui
Chang, Shulei
Ge, Xinting
Sui, Xiaodan
Jiang, Yanyun
description Skull stripping is a crucial preprocessing step in magnetic resonance imaging (MRI), where experts manually create brain masks. This labor-intensive process heavily relies on the annotator’s expertise, as automation faces challenges such as low tissue contrast, significant variations in image resolution, and blurred boundaries between the brain and surrounding tissues, particularly in rodents. In this study, we have developed a lightweight framework based on Swin-UNETR to automate the skull stripping process in MRI scans of mice and rats. The primary objective of this framework is to eliminate the need for preprocessing, reduce the workload, and provide an out-of-the-box solution capable of adapting to various MRI image resolutions. By employing a lightweight neural network, we aim to lower the performance requirements of the framework. To validate the effectiveness of our approach, we trained and evaluated the network using publicly available multi-center data, encompassing 1,037 rodents and 1,142 images from 89 centers, resulting in a preliminary mean Dice coefficient of 0.9914. The framework, data, and pre-trained models can be found on the following link: https://github.com/VitoLin21/Rodent-Skull-Stripping. •Released multi-center rodent MRI brain masks dataset.•RS2-Net is a lightweight framework based on modified Swin-UNETR.•Achieved state-of-the-art brain segmentation on various metrics.•Provides an user-friendly and performance-friendly rodent skull stripping tool.
doi_str_mv 10.1016/j.neuroimage.2024.120769
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7fc89692495647958911616b0b9f9a43</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811924002660</els_id><doaj_id>oai_doaj_org_article_7fc89692495647958911616b0b9f9a43</doaj_id><sourcerecordid>3091283990</sourcerecordid><originalsourceid>FETCH-LOGICAL-d243t-a7200efc05834cfdeacaba3d7ef731fccb1fd59eba2cea32e76db51c6789b2583</originalsourceid><addsrcrecordid>eNpFUctu2zAQFIoGaB79Bx57ocuHJIq5JUGbGEhbwEnPBEUuDdoyqZJUgv596DpAT7uYnZ3FzjQNomRFCe2_7lYBlhT9QW9hxQhrV5QR0csPzTklssOyE-zjse84HiiVn5qLnHeEEEnb4bwxmyeGf0K5RjcBQbC4RFwLsgAzmkCn4MMWuaQP8BrTHrmYUIoWQkF5v0wTyiX5eT6SfECHZSoemzqFhMakK_Rjs75qzpyeMnx-r5fN7-_fnu8e8OOv-_XdzSO2rOUFa8EIAWdIN_DWOAva6FFzK8AJTp0xI3W2kzBqZkBzBqK3Y0dNLwY5srp02axPujbqnZpT9ST9VVF79Q-Iaat0Kt5MoIQzg-wla2XXt0J2g6S0p_1IRumkbnnV-nLSmlP8s0Au6uCzgWnSAeKSFa_-sYFLSSr19kSF-tuLh6Sy8RAMWJ_AlHrcK0rUMS21U__TUse01Ckt_gaCjYzg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091283990</pqid></control><display><type>article</type><title>RS2-Net: An end-to-end deep learning framework for rodent skull stripping in multi-center brain MRI</title><source>ScienceDirect Freedom Collection</source><creator>Lin, Yongkang ; Ding, Yanhui ; Chang, Shulei ; Ge, Xinting ; Sui, Xiaodan ; Jiang, Yanyun</creator><creatorcontrib>Lin, Yongkang ; Ding, Yanhui ; Chang, Shulei ; Ge, Xinting ; Sui, Xiaodan ; Jiang, Yanyun</creatorcontrib><description>Skull stripping is a crucial preprocessing step in magnetic resonance imaging (MRI), where experts manually create brain masks. This labor-intensive process heavily relies on the annotator’s expertise, as automation faces challenges such as low tissue contrast, significant variations in image resolution, and blurred boundaries between the brain and surrounding tissues, particularly in rodents. In this study, we have developed a lightweight framework based on Swin-UNETR to automate the skull stripping process in MRI scans of mice and rats. The primary objective of this framework is to eliminate the need for preprocessing, reduce the workload, and provide an out-of-the-box solution capable of adapting to various MRI image resolutions. By employing a lightweight neural network, we aim to lower the performance requirements of the framework. To validate the effectiveness of our approach, we trained and evaluated the network using publicly available multi-center data, encompassing 1,037 rodents and 1,142 images from 89 centers, resulting in a preliminary mean Dice coefficient of 0.9914. The framework, data, and pre-trained models can be found on the following link: https://github.com/VitoLin21/Rodent-Skull-Stripping. •Released multi-center rodent MRI brain masks dataset.•RS2-Net is a lightweight framework based on modified Swin-UNETR.•Achieved state-of-the-art brain segmentation on various metrics.•Provides an user-friendly and performance-friendly rodent skull stripping tool.</description><identifier>ISSN: 1053-8119</identifier><identifier>ISSN: 1095-9572</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2024.120769</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Deep learning ; Rodent brain ; Segmentation ; Skull stripping</subject><ispartof>NeuroImage (Orlando, Fla.), 2024-09, Vol.298, p.120769, Article 120769</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0002-2050-2756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lin, Yongkang</creatorcontrib><creatorcontrib>Ding, Yanhui</creatorcontrib><creatorcontrib>Chang, Shulei</creatorcontrib><creatorcontrib>Ge, Xinting</creatorcontrib><creatorcontrib>Sui, Xiaodan</creatorcontrib><creatorcontrib>Jiang, Yanyun</creatorcontrib><title>RS2-Net: An end-to-end deep learning framework for rodent skull stripping in multi-center brain MRI</title><title>NeuroImage (Orlando, Fla.)</title><description>Skull stripping is a crucial preprocessing step in magnetic resonance imaging (MRI), where experts manually create brain masks. This labor-intensive process heavily relies on the annotator’s expertise, as automation faces challenges such as low tissue contrast, significant variations in image resolution, and blurred boundaries between the brain and surrounding tissues, particularly in rodents. In this study, we have developed a lightweight framework based on Swin-UNETR to automate the skull stripping process in MRI scans of mice and rats. The primary objective of this framework is to eliminate the need for preprocessing, reduce the workload, and provide an out-of-the-box solution capable of adapting to various MRI image resolutions. By employing a lightweight neural network, we aim to lower the performance requirements of the framework. To validate the effectiveness of our approach, we trained and evaluated the network using publicly available multi-center data, encompassing 1,037 rodents and 1,142 images from 89 centers, resulting in a preliminary mean Dice coefficient of 0.9914. The framework, data, and pre-trained models can be found on the following link: https://github.com/VitoLin21/Rodent-Skull-Stripping. •Released multi-center rodent MRI brain masks dataset.•RS2-Net is a lightweight framework based on modified Swin-UNETR.•Achieved state-of-the-art brain segmentation on various metrics.•Provides an user-friendly and performance-friendly rodent skull stripping tool.</description><subject>Deep learning</subject><subject>Rodent brain</subject><subject>Segmentation</subject><subject>Skull stripping</subject><issn>1053-8119</issn><issn>1095-9572</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpFUctu2zAQFIoGaB79Bx57ocuHJIq5JUGbGEhbwEnPBEUuDdoyqZJUgv596DpAT7uYnZ3FzjQNomRFCe2_7lYBlhT9QW9hxQhrV5QR0csPzTklssOyE-zjse84HiiVn5qLnHeEEEnb4bwxmyeGf0K5RjcBQbC4RFwLsgAzmkCn4MMWuaQP8BrTHrmYUIoWQkF5v0wTyiX5eT6SfECHZSoemzqFhMakK_Rjs75qzpyeMnx-r5fN7-_fnu8e8OOv-_XdzSO2rOUFa8EIAWdIN_DWOAva6FFzK8AJTp0xI3W2kzBqZkBzBqK3Y0dNLwY5srp02axPujbqnZpT9ST9VVF79Q-Iaat0Kt5MoIQzg-wla2XXt0J2g6S0p_1IRumkbnnV-nLSmlP8s0Au6uCzgWnSAeKSFa_-sYFLSSr19kSF-tuLh6Sy8RAMWJ_AlHrcK0rUMS21U__TUse01Ckt_gaCjYzg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Lin, Yongkang</creator><creator>Ding, Yanhui</creator><creator>Chang, Shulei</creator><creator>Ge, Xinting</creator><creator>Sui, Xiaodan</creator><creator>Jiang, Yanyun</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-2050-2756</orcidid></search><sort><creationdate>202409</creationdate><title>RS2-Net: An end-to-end deep learning framework for rodent skull stripping in multi-center brain MRI</title><author>Lin, Yongkang ; Ding, Yanhui ; Chang, Shulei ; Ge, Xinting ; Sui, Xiaodan ; Jiang, Yanyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d243t-a7200efc05834cfdeacaba3d7ef731fccb1fd59eba2cea32e76db51c6789b2583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Rodent brain</topic><topic>Segmentation</topic><topic>Skull stripping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yongkang</creatorcontrib><creatorcontrib>Ding, Yanhui</creatorcontrib><creatorcontrib>Chang, Shulei</creatorcontrib><creatorcontrib>Ge, Xinting</creatorcontrib><creatorcontrib>Sui, Xiaodan</creatorcontrib><creatorcontrib>Jiang, Yanyun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>MEDLINE - Academic</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yongkang</au><au>Ding, Yanhui</au><au>Chang, Shulei</au><au>Ge, Xinting</au><au>Sui, Xiaodan</au><au>Jiang, Yanyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RS2-Net: An end-to-end deep learning framework for rodent skull stripping in multi-center brain MRI</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><date>2024-09</date><risdate>2024</risdate><volume>298</volume><spage>120769</spage><pages>120769-</pages><artnum>120769</artnum><issn>1053-8119</issn><issn>1095-9572</issn><eissn>1095-9572</eissn><abstract>Skull stripping is a crucial preprocessing step in magnetic resonance imaging (MRI), where experts manually create brain masks. This labor-intensive process heavily relies on the annotator’s expertise, as automation faces challenges such as low tissue contrast, significant variations in image resolution, and blurred boundaries between the brain and surrounding tissues, particularly in rodents. In this study, we have developed a lightweight framework based on Swin-UNETR to automate the skull stripping process in MRI scans of mice and rats. The primary objective of this framework is to eliminate the need for preprocessing, reduce the workload, and provide an out-of-the-box solution capable of adapting to various MRI image resolutions. By employing a lightweight neural network, we aim to lower the performance requirements of the framework. To validate the effectiveness of our approach, we trained and evaluated the network using publicly available multi-center data, encompassing 1,037 rodents and 1,142 images from 89 centers, resulting in a preliminary mean Dice coefficient of 0.9914. The framework, data, and pre-trained models can be found on the following link: https://github.com/VitoLin21/Rodent-Skull-Stripping. •Released multi-center rodent MRI brain masks dataset.•RS2-Net is a lightweight framework based on modified Swin-UNETR.•Achieved state-of-the-art brain segmentation on various metrics.•Provides an user-friendly and performance-friendly rodent skull stripping tool.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.neuroimage.2024.120769</doi><orcidid>https://orcid.org/0009-0002-2050-2756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2024-09, Vol.298, p.120769, Article 120769
issn 1053-8119
1095-9572
1095-9572
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7fc89692495647958911616b0b9f9a43
source ScienceDirect Freedom Collection
subjects Deep learning
Rodent brain
Segmentation
Skull stripping
title RS2-Net: An end-to-end deep learning framework for rodent skull stripping in multi-center brain MRI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RS2-Net:%20An%20end-to-end%20deep%20learning%20framework%20for%20rodent%20skull%20stripping%20in%20multi-center%20brain%20MRI&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Lin,%20Yongkang&rft.date=2024-09&rft.volume=298&rft.spage=120769&rft.pages=120769-&rft.artnum=120769&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2024.120769&rft_dat=%3Cproquest_doaj_%3E3091283990%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d243t-a7200efc05834cfdeacaba3d7ef731fccb1fd59eba2cea32e76db51c6789b2583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3091283990&rft_id=info:pmid/&rfr_iscdi=true