Loading…
Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators
This article presents a novel fault-tolerant position-force optimal control method for constrained reconfigurable manipulators with uncertain actuator failures. On the basis of the radial basis function neural network (RBFNN)-estimated manipulators dynamics, the proposed force-position error fusion...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.183286-183299 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843 |
container_end_page | 183299 |
container_issue | |
container_start_page | 183286 |
container_title | IEEE access |
container_volume | 8 |
creator | Ma, Bing Dong, Bo Zhou, Fan Li, Yuanchun |
description | This article presents a novel fault-tolerant position-force optimal control method for constrained reconfigurable manipulators with uncertain actuator failures. On the basis of the radial basis function neural network (RBFNN)-estimated manipulators dynamics, the proposed force-position error fusion function and the estimated actuator failure are utilized to construct an improved optimal performance index function, which reflects the faults and optimizes system comprehensive performance as well as the energy consumption simultaneously. Based on the policy iteration (PI) scheme and the adaptive dynamic programming (ADP) algorithm, the Hamiltonian-Jacobi-Bellman (HJB) equation is solved by constructing the critic neural network (NN), and then the approximated fault-tolerant position-force optimal control policy can be derived correspondingly. The closed-loop manipulator system is proved to be asymptotically stable by using the Lyapunov theory. Finally, simulations are provided to demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/ACCESS.2020.3029074 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7feae9cc57f04b57b90b369868f102e1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9214518</ieee_id><doaj_id>oai_doaj_org_article_7feae9cc57f04b57b90b369868f102e1</doaj_id><sourcerecordid>2454470538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEoLDUl-QV4O-nzu6suSHt1r3AYSGpr0Wax1kpE5S66kK-Tf99wLofuyyzAzu8s0zQ2BFSGgP2_6_vbpaUWBwooB1SD5u-aCkrXumGDr9__NH5vrUg4wl5ohIS-ashnwVMMf1359iXgMtn3MaZ_xeAxx333B4oZ2i9NYu-c0uoyxto-phBpS7LYpW9f2Kdacxjb581hqxhBn0U9nU_RhP2Xcja59wBhO04g15XLVfPA4Fnf92i-bX9vb5_57d__j212_ue8sB1U7QjXRChiT3iMnSvJBMwHOUgZkoFwhGZAwsKgpYcSiACqoYlpJR7ji7LK5W3yHhAdzyuGI-cUkDOYfkPLeYK7Bjs5I79Bpa4X0wHdC7jTs2FqrtfIEqCOz16fF65TT78mVag5pynE-31AuOJcgmJpZbGHZnErJzr9tJWDOYZklLHMOy7yGNatuFlVwzr0p5qe4IIr9Bb3Sj7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454470538</pqid></control><display><type>article</type><title>Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators</title><source>IEEE Xplore Open Access Journals</source><creator>Ma, Bing ; Dong, Bo ; Zhou, Fan ; Li, Yuanchun</creator><creatorcontrib>Ma, Bing ; Dong, Bo ; Zhou, Fan ; Li, Yuanchun</creatorcontrib><description>This article presents a novel fault-tolerant position-force optimal control method for constrained reconfigurable manipulators with uncertain actuator failures. On the basis of the radial basis function neural network (RBFNN)-estimated manipulators dynamics, the proposed force-position error fusion function and the estimated actuator failure are utilized to construct an improved optimal performance index function, which reflects the faults and optimizes system comprehensive performance as well as the energy consumption simultaneously. Based on the policy iteration (PI) scheme and the adaptive dynamic programming (ADP) algorithm, the Hamiltonian-Jacobi-Bellman (HJB) equation is solved by constructing the critic neural network (NN), and then the approximated fault-tolerant position-force optimal control policy can be derived correspondingly. The closed-loop manipulator system is proved to be asymptotically stable by using the Lyapunov theory. Finally, simulations are provided to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3029074</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuator failure ; Actuators ; Adaptive algorithms ; Adaptive control ; adaptive dynamic programming ; Control methods ; Dynamic programming ; Energy consumption ; Fault tolerance ; Fault tolerant systems ; fault-tolerant position-force control ; Manipulator dynamics ; Manipulators ; neural network ; Neural networks ; Optimal control ; Performance indices ; Position errors ; Radial basis function ; Reconfigurable manipulators ; Reconfiguration ; Robot arms</subject><ispartof>IEEE access, 2020, Vol.8, p.183286-183299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843</citedby><cites>FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843</cites><orcidid>0000-0002-0989-6312 ; 0000-0002-8067-099X ; 0000-0003-3988-8054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9214518$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Ma, Bing</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Zhou, Fan</creatorcontrib><creatorcontrib>Li, Yuanchun</creatorcontrib><title>Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article presents a novel fault-tolerant position-force optimal control method for constrained reconfigurable manipulators with uncertain actuator failures. On the basis of the radial basis function neural network (RBFNN)-estimated manipulators dynamics, the proposed force-position error fusion function and the estimated actuator failure are utilized to construct an improved optimal performance index function, which reflects the faults and optimizes system comprehensive performance as well as the energy consumption simultaneously. Based on the policy iteration (PI) scheme and the adaptive dynamic programming (ADP) algorithm, the Hamiltonian-Jacobi-Bellman (HJB) equation is solved by constructing the critic neural network (NN), and then the approximated fault-tolerant position-force optimal control policy can be derived correspondingly. The closed-loop manipulator system is proved to be asymptotically stable by using the Lyapunov theory. Finally, simulations are provided to demonstrate the effectiveness of the proposed method.</description><subject>Actuator failure</subject><subject>Actuators</subject><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>adaptive dynamic programming</subject><subject>Control methods</subject><subject>Dynamic programming</subject><subject>Energy consumption</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>fault-tolerant position-force control</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>Performance indices</subject><subject>Position errors</subject><subject>Radial basis function</subject><subject>Reconfigurable manipulators</subject><subject>Reconfiguration</subject><subject>Robot arms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEoLDUl-QV4O-nzu6suSHt1r3AYSGpr0Wax1kpE5S66kK-Tf99wLofuyyzAzu8s0zQ2BFSGgP2_6_vbpaUWBwooB1SD5u-aCkrXumGDr9__NH5vrUg4wl5ohIS-ashnwVMMf1359iXgMtn3MaZ_xeAxx333B4oZ2i9NYu-c0uoyxto-phBpS7LYpW9f2Kdacxjb581hqxhBn0U9nU_RhP2Xcja59wBhO04g15XLVfPA4Fnf92i-bX9vb5_57d__j212_ue8sB1U7QjXRChiT3iMnSvJBMwHOUgZkoFwhGZAwsKgpYcSiACqoYlpJR7ji7LK5W3yHhAdzyuGI-cUkDOYfkPLeYK7Bjs5I79Bpa4X0wHdC7jTs2FqrtfIEqCOz16fF65TT78mVag5pynE-31AuOJcgmJpZbGHZnErJzr9tJWDOYZklLHMOy7yGNatuFlVwzr0p5qe4IIr9Bb3Sj7A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ma, Bing</creator><creator>Dong, Bo</creator><creator>Zhou, Fan</creator><creator>Li, Yuanchun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0989-6312</orcidid><orcidid>https://orcid.org/0000-0002-8067-099X</orcidid><orcidid>https://orcid.org/0000-0003-3988-8054</orcidid></search><sort><creationdate>2020</creationdate><title>Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators</title><author>Ma, Bing ; Dong, Bo ; Zhou, Fan ; Li, Yuanchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuator failure</topic><topic>Actuators</topic><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>adaptive dynamic programming</topic><topic>Control methods</topic><topic>Dynamic programming</topic><topic>Energy consumption</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>fault-tolerant position-force control</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>Performance indices</topic><topic>Position errors</topic><topic>Radial basis function</topic><topic>Reconfigurable manipulators</topic><topic>Reconfiguration</topic><topic>Robot arms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Bing</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Zhou, Fan</creatorcontrib><creatorcontrib>Li, Yuanchun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Bing</au><au>Dong, Bo</au><au>Zhou, Fan</au><au>Li, Yuanchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>183286</spage><epage>183299</epage><pages>183286-183299</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article presents a novel fault-tolerant position-force optimal control method for constrained reconfigurable manipulators with uncertain actuator failures. On the basis of the radial basis function neural network (RBFNN)-estimated manipulators dynamics, the proposed force-position error fusion function and the estimated actuator failure are utilized to construct an improved optimal performance index function, which reflects the faults and optimizes system comprehensive performance as well as the energy consumption simultaneously. Based on the policy iteration (PI) scheme and the adaptive dynamic programming (ADP) algorithm, the Hamiltonian-Jacobi-Bellman (HJB) equation is solved by constructing the critic neural network (NN), and then the approximated fault-tolerant position-force optimal control policy can be derived correspondingly. The closed-loop manipulator system is proved to be asymptotically stable by using the Lyapunov theory. Finally, simulations are provided to demonstrate the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3029074</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0989-6312</orcidid><orcidid>https://orcid.org/0000-0002-8067-099X</orcidid><orcidid>https://orcid.org/0000-0003-3988-8054</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.183286-183299 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7feae9cc57f04b57b90b369868f102e1 |
source | IEEE Xplore Open Access Journals |
subjects | Actuator failure Actuators Adaptive algorithms Adaptive control adaptive dynamic programming Control methods Dynamic programming Energy consumption Fault tolerance Fault tolerant systems fault-tolerant position-force control Manipulator dynamics Manipulators neural network Neural networks Optimal control Performance indices Position errors Radial basis function Reconfigurable manipulators Reconfiguration Robot arms |
title | Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Dynamic%20Programming-Based%20Fault-Tolerant%20Position-Force%20Control%20of%20Constrained%20Reconfigurable%20Manipulators&rft.jtitle=IEEE%20access&rft.au=Ma,%20Bing&rft.date=2020&rft.volume=8&rft.spage=183286&rft.epage=183299&rft.pages=183286-183299&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3029074&rft_dat=%3Cproquest_doaj_%3E2454470538%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454470538&rft_id=info:pmid/&rft_ieee_id=9214518&rfr_iscdi=true |