Loading…

Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators

This article presents a novel fault-tolerant position-force optimal control method for constrained reconfigurable manipulators with uncertain actuator failures. On the basis of the radial basis function neural network (RBFNN)-estimated manipulators dynamics, the proposed force-position error fusion...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.183286-183299
Main Authors: Ma, Bing, Dong, Bo, Zhou, Fan, Li, Yuanchun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843
cites cdi_FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843
container_end_page 183299
container_issue
container_start_page 183286
container_title IEEE access
container_volume 8
creator Ma, Bing
Dong, Bo
Zhou, Fan
Li, Yuanchun
description This article presents a novel fault-tolerant position-force optimal control method for constrained reconfigurable manipulators with uncertain actuator failures. On the basis of the radial basis function neural network (RBFNN)-estimated manipulators dynamics, the proposed force-position error fusion function and the estimated actuator failure are utilized to construct an improved optimal performance index function, which reflects the faults and optimizes system comprehensive performance as well as the energy consumption simultaneously. Based on the policy iteration (PI) scheme and the adaptive dynamic programming (ADP) algorithm, the Hamiltonian-Jacobi-Bellman (HJB) equation is solved by constructing the critic neural network (NN), and then the approximated fault-tolerant position-force optimal control policy can be derived correspondingly. The closed-loop manipulator system is proved to be asymptotically stable by using the Lyapunov theory. Finally, simulations are provided to demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/ACCESS.2020.3029074
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7feae9cc57f04b57b90b369868f102e1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9214518</ieee_id><doaj_id>oai_doaj_org_article_7feae9cc57f04b57b90b369868f102e1</doaj_id><sourcerecordid>2454470538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEoLDUl-QV4O-nzu6suSHt1r3AYSGpr0Wax1kpE5S66kK-Tf99wLofuyyzAzu8s0zQ2BFSGgP2_6_vbpaUWBwooB1SD5u-aCkrXumGDr9__NH5vrUg4wl5ohIS-ashnwVMMf1359iXgMtn3MaZ_xeAxx333B4oZ2i9NYu-c0uoyxto-phBpS7LYpW9f2Kdacxjb581hqxhBn0U9nU_RhP2Xcja59wBhO04g15XLVfPA4Fnf92i-bX9vb5_57d__j212_ue8sB1U7QjXRChiT3iMnSvJBMwHOUgZkoFwhGZAwsKgpYcSiACqoYlpJR7ji7LK5W3yHhAdzyuGI-cUkDOYfkPLeYK7Bjs5I79Bpa4X0wHdC7jTs2FqrtfIEqCOz16fF65TT78mVag5pynE-31AuOJcgmJpZbGHZnErJzr9tJWDOYZklLHMOy7yGNatuFlVwzr0p5qe4IIr9Bb3Sj7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454470538</pqid></control><display><type>article</type><title>Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators</title><source>IEEE Xplore Open Access Journals</source><creator>Ma, Bing ; Dong, Bo ; Zhou, Fan ; Li, Yuanchun</creator><creatorcontrib>Ma, Bing ; Dong, Bo ; Zhou, Fan ; Li, Yuanchun</creatorcontrib><description>This article presents a novel fault-tolerant position-force optimal control method for constrained reconfigurable manipulators with uncertain actuator failures. On the basis of the radial basis function neural network (RBFNN)-estimated manipulators dynamics, the proposed force-position error fusion function and the estimated actuator failure are utilized to construct an improved optimal performance index function, which reflects the faults and optimizes system comprehensive performance as well as the energy consumption simultaneously. Based on the policy iteration (PI) scheme and the adaptive dynamic programming (ADP) algorithm, the Hamiltonian-Jacobi-Bellman (HJB) equation is solved by constructing the critic neural network (NN), and then the approximated fault-tolerant position-force optimal control policy can be derived correspondingly. The closed-loop manipulator system is proved to be asymptotically stable by using the Lyapunov theory. Finally, simulations are provided to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3029074</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuator failure ; Actuators ; Adaptive algorithms ; Adaptive control ; adaptive dynamic programming ; Control methods ; Dynamic programming ; Energy consumption ; Fault tolerance ; Fault tolerant systems ; fault-tolerant position-force control ; Manipulator dynamics ; Manipulators ; neural network ; Neural networks ; Optimal control ; Performance indices ; Position errors ; Radial basis function ; Reconfigurable manipulators ; Reconfiguration ; Robot arms</subject><ispartof>IEEE access, 2020, Vol.8, p.183286-183299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843</citedby><cites>FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843</cites><orcidid>0000-0002-0989-6312 ; 0000-0002-8067-099X ; 0000-0003-3988-8054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9214518$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Ma, Bing</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Zhou, Fan</creatorcontrib><creatorcontrib>Li, Yuanchun</creatorcontrib><title>Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article presents a novel fault-tolerant position-force optimal control method for constrained reconfigurable manipulators with uncertain actuator failures. On the basis of the radial basis function neural network (RBFNN)-estimated manipulators dynamics, the proposed force-position error fusion function and the estimated actuator failure are utilized to construct an improved optimal performance index function, which reflects the faults and optimizes system comprehensive performance as well as the energy consumption simultaneously. Based on the policy iteration (PI) scheme and the adaptive dynamic programming (ADP) algorithm, the Hamiltonian-Jacobi-Bellman (HJB) equation is solved by constructing the critic neural network (NN), and then the approximated fault-tolerant position-force optimal control policy can be derived correspondingly. The closed-loop manipulator system is proved to be asymptotically stable by using the Lyapunov theory. Finally, simulations are provided to demonstrate the effectiveness of the proposed method.</description><subject>Actuator failure</subject><subject>Actuators</subject><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>adaptive dynamic programming</subject><subject>Control methods</subject><subject>Dynamic programming</subject><subject>Energy consumption</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>fault-tolerant position-force control</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>Performance indices</subject><subject>Position errors</subject><subject>Radial basis function</subject><subject>Reconfigurable manipulators</subject><subject>Reconfiguration</subject><subject>Robot arms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEoLDUl-QV4O-nzu6suSHt1r3AYSGpr0Wax1kpE5S66kK-Tf99wLofuyyzAzu8s0zQ2BFSGgP2_6_vbpaUWBwooB1SD5u-aCkrXumGDr9__NH5vrUg4wl5ohIS-ashnwVMMf1359iXgMtn3MaZ_xeAxx333B4oZ2i9NYu-c0uoyxto-phBpS7LYpW9f2Kdacxjb581hqxhBn0U9nU_RhP2Xcja59wBhO04g15XLVfPA4Fnf92i-bX9vb5_57d__j212_ue8sB1U7QjXRChiT3iMnSvJBMwHOUgZkoFwhGZAwsKgpYcSiACqoYlpJR7ji7LK5W3yHhAdzyuGI-cUkDOYfkPLeYK7Bjs5I79Bpa4X0wHdC7jTs2FqrtfIEqCOz16fF65TT78mVag5pynE-31AuOJcgmJpZbGHZnErJzr9tJWDOYZklLHMOy7yGNatuFlVwzr0p5qe4IIr9Bb3Sj7A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ma, Bing</creator><creator>Dong, Bo</creator><creator>Zhou, Fan</creator><creator>Li, Yuanchun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0989-6312</orcidid><orcidid>https://orcid.org/0000-0002-8067-099X</orcidid><orcidid>https://orcid.org/0000-0003-3988-8054</orcidid></search><sort><creationdate>2020</creationdate><title>Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators</title><author>Ma, Bing ; Dong, Bo ; Zhou, Fan ; Li, Yuanchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuator failure</topic><topic>Actuators</topic><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>adaptive dynamic programming</topic><topic>Control methods</topic><topic>Dynamic programming</topic><topic>Energy consumption</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>fault-tolerant position-force control</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>Performance indices</topic><topic>Position errors</topic><topic>Radial basis function</topic><topic>Reconfigurable manipulators</topic><topic>Reconfiguration</topic><topic>Robot arms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Bing</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Zhou, Fan</creatorcontrib><creatorcontrib>Li, Yuanchun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Bing</au><au>Dong, Bo</au><au>Zhou, Fan</au><au>Li, Yuanchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>183286</spage><epage>183299</epage><pages>183286-183299</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article presents a novel fault-tolerant position-force optimal control method for constrained reconfigurable manipulators with uncertain actuator failures. On the basis of the radial basis function neural network (RBFNN)-estimated manipulators dynamics, the proposed force-position error fusion function and the estimated actuator failure are utilized to construct an improved optimal performance index function, which reflects the faults and optimizes system comprehensive performance as well as the energy consumption simultaneously. Based on the policy iteration (PI) scheme and the adaptive dynamic programming (ADP) algorithm, the Hamiltonian-Jacobi-Bellman (HJB) equation is solved by constructing the critic neural network (NN), and then the approximated fault-tolerant position-force optimal control policy can be derived correspondingly. The closed-loop manipulator system is proved to be asymptotically stable by using the Lyapunov theory. Finally, simulations are provided to demonstrate the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3029074</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0989-6312</orcidid><orcidid>https://orcid.org/0000-0002-8067-099X</orcidid><orcidid>https://orcid.org/0000-0003-3988-8054</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.183286-183299
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7feae9cc57f04b57b90b369868f102e1
source IEEE Xplore Open Access Journals
subjects Actuator failure
Actuators
Adaptive algorithms
Adaptive control
adaptive dynamic programming
Control methods
Dynamic programming
Energy consumption
Fault tolerance
Fault tolerant systems
fault-tolerant position-force control
Manipulator dynamics
Manipulators
neural network
Neural networks
Optimal control
Performance indices
Position errors
Radial basis function
Reconfigurable manipulators
Reconfiguration
Robot arms
title Adaptive Dynamic Programming-Based Fault-Tolerant Position-Force Control of Constrained Reconfigurable Manipulators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Dynamic%20Programming-Based%20Fault-Tolerant%20Position-Force%20Control%20of%20Constrained%20Reconfigurable%20Manipulators&rft.jtitle=IEEE%20access&rft.au=Ma,%20Bing&rft.date=2020&rft.volume=8&rft.spage=183286&rft.epage=183299&rft.pages=183286-183299&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3029074&rft_dat=%3Cproquest_doaj_%3E2454470538%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-1291980337ffa41874d9350ec2301d248a1da130ca92131ca5025283987e14843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454470538&rft_id=info:pmid/&rft_ieee_id=9214518&rfr_iscdi=true