Loading…
Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii
Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, us...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2016-09, Vol.21 (9), p.1255 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93 |
container_end_page | |
container_issue | 9 |
container_start_page | 1255 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 21 |
creator | Silva Santos, Klebson Barbosa, Andriele Mendonça Pereira da Costa, Luiz Pinheiro, Malone Santos Oliveira, Maria Beatriz Prior Pinto Ferreira Padilha, Francine |
description | Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, using a new green chemistry process, by the addition of silver nitrate (1.10
mol·L
) into a fermentative medium of
spp. to produce a xanthan gum polymer. Transmission electron microscopy (TEM) was used to evaluate the shape and size of the silver nanoparticles obtained. The silver ions in the nanocomposite were quantified by flame atomic absorption spectrometry (FAAS). The antibacterial activity of the nanomaterial against
(ATCC 22652),
(ATCC 29282),
(ATCC 27853) and
(ATCC 25923) was carried out using 500 mg of silver nanocomposite.
and
multidrug-resistant strains, isolated from hospitalized patients were also included in the study. The biosynthesized silver nanocomposite showed spherical nanoparticles with sizes smaller than 10 nm; 1 g of nanocomposite contained 49.24 µg of silver. Multidrug-resistant strains of
and
, and the other Gram-positive and Gram-negative bacteria tested, were sensitive to the silver nanocomposite (10-12.9 mm of inhibition zone). The biosynthesized silver nanocomposite seems to be a promising antibacterial agent for different applications, namely biomedical devices or topical wound coatings. |
doi_str_mv | 10.3390/molecules21091255 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7ff2556797ae450a9d8541a7c2f02ec0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7ff2556797ae450a9d8541a7c2f02ec0</doaj_id><sourcerecordid>1859722975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93</originalsourceid><addsrcrecordid>eNplkttu1DAQhiMEogd4AG6QL7lJsZ04iblAWioOlcpBFK6tsT3eukrsxXZW2ufghcmypWrF1Yxm_vlmNPqr6gWjZ00j6espjmjmETNnVDIuxKPqmLWc1g1t5eN7-VF1kvMNpZy1TDytjnjfiZ427Lj6feXHLSbyBUI0cdrE7AuSdz7mXSjXmH1-Q1aheA2mYPIwkpUpfuvLjsAafMiFfJ7H4m2a1_X3vb5AKOSqpH2TREe-ZZxtnGKATAAXmQ8xA4FgF5QPWOKBTTTME4Tg_bPqiYMx4_PbeFr9_PD-x_mn-vLrx4vz1WVt2k6U2jRmkE1nrZZGDxzswLVretDIqbPAmUbWguWmd66Rwg2t0Vo4zQdgvNOyOa0uDlwb4UZtkp8g7VQEr_4WYlorSMWbEdWCWN7b9bIHbAUFaQfRMugNd5SjoQvr7YG1mfWE1mBYPjA-gD7sBH-t1nGrOt63nIsF8OoWkOKvGXNRk88GxxECxjkrNgjZcy77vZQdpCbFnBO6uzWMqr0x1H_GWGZe3r_vbuKfE5o_lqW9KA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859722975</pqid></control><display><type>article</type><title>Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Silva Santos, Klebson ; Barbosa, Andriele Mendonça ; Pereira da Costa, Luiz ; Pinheiro, Malone Santos ; Oliveira, Maria Beatriz Prior Pinto ; Ferreira Padilha, Francine</creator><creatorcontrib>Silva Santos, Klebson ; Barbosa, Andriele Mendonça ; Pereira da Costa, Luiz ; Pinheiro, Malone Santos ; Oliveira, Maria Beatriz Prior Pinto ; Ferreira Padilha, Francine</creatorcontrib><description>Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, using a new green chemistry process, by the addition of silver nitrate (1.10
mol·L
) into a fermentative medium of
spp. to produce a xanthan gum polymer. Transmission electron microscopy (TEM) was used to evaluate the shape and size of the silver nanoparticles obtained. The silver ions in the nanocomposite were quantified by flame atomic absorption spectrometry (FAAS). The antibacterial activity of the nanomaterial against
(ATCC 22652),
(ATCC 29282),
(ATCC 27853) and
(ATCC 25923) was carried out using 500 mg of silver nanocomposite.
and
multidrug-resistant strains, isolated from hospitalized patients were also included in the study. The biosynthesized silver nanocomposite showed spherical nanoparticles with sizes smaller than 10 nm; 1 g of nanocomposite contained 49.24 µg of silver. Multidrug-resistant strains of
and
, and the other Gram-positive and Gram-negative bacteria tested, were sensitive to the silver nanocomposite (10-12.9 mm of inhibition zone). The biosynthesized silver nanocomposite seems to be a promising antibacterial agent for different applications, namely biomedical devices or topical wound coatings.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules21091255</identifier><identifier>PMID: 27657031</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>Acinetobacter baumannii ; antibacterial activity ; multidrug-resistance ; Pseudomonas aeruginosa ; silver nanocomposite biosynthesis</subject><ispartof>Molecules (Basel, Switzerland), 2016-09, Vol.21 (9), p.1255</ispartof><rights>2016 by the authors. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93</citedby><cites>FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274225/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274225/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27657031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva Santos, Klebson</creatorcontrib><creatorcontrib>Barbosa, Andriele Mendonça</creatorcontrib><creatorcontrib>Pereira da Costa, Luiz</creatorcontrib><creatorcontrib>Pinheiro, Malone Santos</creatorcontrib><creatorcontrib>Oliveira, Maria Beatriz Prior Pinto</creatorcontrib><creatorcontrib>Ferreira Padilha, Francine</creatorcontrib><title>Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, using a new green chemistry process, by the addition of silver nitrate (1.10
mol·L
) into a fermentative medium of
spp. to produce a xanthan gum polymer. Transmission electron microscopy (TEM) was used to evaluate the shape and size of the silver nanoparticles obtained. The silver ions in the nanocomposite were quantified by flame atomic absorption spectrometry (FAAS). The antibacterial activity of the nanomaterial against
(ATCC 22652),
(ATCC 29282),
(ATCC 27853) and
(ATCC 25923) was carried out using 500 mg of silver nanocomposite.
and
multidrug-resistant strains, isolated from hospitalized patients were also included in the study. The biosynthesized silver nanocomposite showed spherical nanoparticles with sizes smaller than 10 nm; 1 g of nanocomposite contained 49.24 µg of silver. Multidrug-resistant strains of
and
, and the other Gram-positive and Gram-negative bacteria tested, were sensitive to the silver nanocomposite (10-12.9 mm of inhibition zone). The biosynthesized silver nanocomposite seems to be a promising antibacterial agent for different applications, namely biomedical devices or topical wound coatings.</description><subject>Acinetobacter baumannii</subject><subject>antibacterial activity</subject><subject>multidrug-resistance</subject><subject>Pseudomonas aeruginosa</subject><subject>silver nanocomposite biosynthesis</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkttu1DAQhiMEogd4AG6QL7lJsZ04iblAWioOlcpBFK6tsT3eukrsxXZW2ufghcmypWrF1Yxm_vlmNPqr6gWjZ00j6espjmjmETNnVDIuxKPqmLWc1g1t5eN7-VF1kvMNpZy1TDytjnjfiZ427Lj6feXHLSbyBUI0cdrE7AuSdz7mXSjXmH1-Q1aheA2mYPIwkpUpfuvLjsAafMiFfJ7H4m2a1_X3vb5AKOSqpH2TREe-ZZxtnGKATAAXmQ8xA4FgF5QPWOKBTTTME4Tg_bPqiYMx4_PbeFr9_PD-x_mn-vLrx4vz1WVt2k6U2jRmkE1nrZZGDxzswLVretDIqbPAmUbWguWmd66Rwg2t0Vo4zQdgvNOyOa0uDlwb4UZtkp8g7VQEr_4WYlorSMWbEdWCWN7b9bIHbAUFaQfRMugNd5SjoQvr7YG1mfWE1mBYPjA-gD7sBH-t1nGrOt63nIsF8OoWkOKvGXNRk88GxxECxjkrNgjZcy77vZQdpCbFnBO6uzWMqr0x1H_GWGZe3r_vbuKfE5o_lqW9KA</recordid><startdate>20160920</startdate><enddate>20160920</enddate><creator>Silva Santos, Klebson</creator><creator>Barbosa, Andriele Mendonça</creator><creator>Pereira da Costa, Luiz</creator><creator>Pinheiro, Malone Santos</creator><creator>Oliveira, Maria Beatriz Prior Pinto</creator><creator>Ferreira Padilha, Francine</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160920</creationdate><title>Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii</title><author>Silva Santos, Klebson ; Barbosa, Andriele Mendonça ; Pereira da Costa, Luiz ; Pinheiro, Malone Santos ; Oliveira, Maria Beatriz Prior Pinto ; Ferreira Padilha, Francine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acinetobacter baumannii</topic><topic>antibacterial activity</topic><topic>multidrug-resistance</topic><topic>Pseudomonas aeruginosa</topic><topic>silver nanocomposite biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva Santos, Klebson</creatorcontrib><creatorcontrib>Barbosa, Andriele Mendonça</creatorcontrib><creatorcontrib>Pereira da Costa, Luiz</creatorcontrib><creatorcontrib>Pinheiro, Malone Santos</creatorcontrib><creatorcontrib>Oliveira, Maria Beatriz Prior Pinto</creatorcontrib><creatorcontrib>Ferreira Padilha, Francine</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva Santos, Klebson</au><au>Barbosa, Andriele Mendonça</au><au>Pereira da Costa, Luiz</au><au>Pinheiro, Malone Santos</au><au>Oliveira, Maria Beatriz Prior Pinto</au><au>Ferreira Padilha, Francine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2016-09-20</date><risdate>2016</risdate><volume>21</volume><issue>9</issue><spage>1255</spage><pages>1255-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, using a new green chemistry process, by the addition of silver nitrate (1.10
mol·L
) into a fermentative medium of
spp. to produce a xanthan gum polymer. Transmission electron microscopy (TEM) was used to evaluate the shape and size of the silver nanoparticles obtained. The silver ions in the nanocomposite were quantified by flame atomic absorption spectrometry (FAAS). The antibacterial activity of the nanomaterial against
(ATCC 22652),
(ATCC 29282),
(ATCC 27853) and
(ATCC 25923) was carried out using 500 mg of silver nanocomposite.
and
multidrug-resistant strains, isolated from hospitalized patients were also included in the study. The biosynthesized silver nanocomposite showed spherical nanoparticles with sizes smaller than 10 nm; 1 g of nanocomposite contained 49.24 µg of silver. Multidrug-resistant strains of
and
, and the other Gram-positive and Gram-negative bacteria tested, were sensitive to the silver nanocomposite (10-12.9 mm of inhibition zone). The biosynthesized silver nanocomposite seems to be a promising antibacterial agent for different applications, namely biomedical devices or topical wound coatings.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>27657031</pmid><doi>10.3390/molecules21091255</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2016-09, Vol.21 (9), p.1255 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7ff2556797ae450a9d8541a7c2f02ec0 |
source | Publicly Available Content Database; PubMed Central |
subjects | Acinetobacter baumannii antibacterial activity multidrug-resistance Pseudomonas aeruginosa silver nanocomposite biosynthesis |
title | Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20Nanocomposite%20Biosynthesis:%20Antibacterial%20Activity%20against%20Multidrug-Resistant%20Strains%20of%20Pseudomonas%20aeruginosa%20and%20Acinetobacter%20baumannii&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Silva%20Santos,%20Klebson&rft.date=2016-09-20&rft.volume=21&rft.issue=9&rft.spage=1255&rft.pages=1255-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules21091255&rft_dat=%3Cproquest_doaj_%3E1859722975%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859722975&rft_id=info:pmid/27657031&rfr_iscdi=true |