Loading…

Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii

Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, us...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2016-09, Vol.21 (9), p.1255
Main Authors: Silva Santos, Klebson, Barbosa, Andriele Mendonça, Pereira da Costa, Luiz, Pinheiro, Malone Santos, Oliveira, Maria Beatriz Prior Pinto, Ferreira Padilha, Francine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93
cites cdi_FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93
container_end_page
container_issue 9
container_start_page 1255
container_title Molecules (Basel, Switzerland)
container_volume 21
creator Silva Santos, Klebson
Barbosa, Andriele Mendonça
Pereira da Costa, Luiz
Pinheiro, Malone Santos
Oliveira, Maria Beatriz Prior Pinto
Ferreira Padilha, Francine
description Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, using a new green chemistry process, by the addition of silver nitrate (1.10 mol·L ) into a fermentative medium of spp. to produce a xanthan gum polymer. Transmission electron microscopy (TEM) was used to evaluate the shape and size of the silver nanoparticles obtained. The silver ions in the nanocomposite were quantified by flame atomic absorption spectrometry (FAAS). The antibacterial activity of the nanomaterial against (ATCC 22652), (ATCC 29282), (ATCC 27853) and (ATCC 25923) was carried out using 500 mg of silver nanocomposite. and multidrug-resistant strains, isolated from hospitalized patients were also included in the study. The biosynthesized silver nanocomposite showed spherical nanoparticles with sizes smaller than 10 nm; 1 g of nanocomposite contained 49.24 µg of silver. Multidrug-resistant strains of and , and the other Gram-positive and Gram-negative bacteria tested, were sensitive to the silver nanocomposite (10-12.9 mm of inhibition zone). The biosynthesized silver nanocomposite seems to be a promising antibacterial agent for different applications, namely biomedical devices or topical wound coatings.
doi_str_mv 10.3390/molecules21091255
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7ff2556797ae450a9d8541a7c2f02ec0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7ff2556797ae450a9d8541a7c2f02ec0</doaj_id><sourcerecordid>1859722975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93</originalsourceid><addsrcrecordid>eNplkttu1DAQhiMEogd4AG6QL7lJsZ04iblAWioOlcpBFK6tsT3eukrsxXZW2ufghcmypWrF1Yxm_vlmNPqr6gWjZ00j6espjmjmETNnVDIuxKPqmLWc1g1t5eN7-VF1kvMNpZy1TDytjnjfiZ427Lj6feXHLSbyBUI0cdrE7AuSdz7mXSjXmH1-Q1aheA2mYPIwkpUpfuvLjsAafMiFfJ7H4m2a1_X3vb5AKOSqpH2TREe-ZZxtnGKATAAXmQ8xA4FgF5QPWOKBTTTME4Tg_bPqiYMx4_PbeFr9_PD-x_mn-vLrx4vz1WVt2k6U2jRmkE1nrZZGDxzswLVretDIqbPAmUbWguWmd66Rwg2t0Vo4zQdgvNOyOa0uDlwb4UZtkp8g7VQEr_4WYlorSMWbEdWCWN7b9bIHbAUFaQfRMugNd5SjoQvr7YG1mfWE1mBYPjA-gD7sBH-t1nGrOt63nIsF8OoWkOKvGXNRk88GxxECxjkrNgjZcy77vZQdpCbFnBO6uzWMqr0x1H_GWGZe3r_vbuKfE5o_lqW9KA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859722975</pqid></control><display><type>article</type><title>Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Silva Santos, Klebson ; Barbosa, Andriele Mendonça ; Pereira da Costa, Luiz ; Pinheiro, Malone Santos ; Oliveira, Maria Beatriz Prior Pinto ; Ferreira Padilha, Francine</creator><creatorcontrib>Silva Santos, Klebson ; Barbosa, Andriele Mendonça ; Pereira da Costa, Luiz ; Pinheiro, Malone Santos ; Oliveira, Maria Beatriz Prior Pinto ; Ferreira Padilha, Francine</creatorcontrib><description>Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, using a new green chemistry process, by the addition of silver nitrate (1.10 mol·L ) into a fermentative medium of spp. to produce a xanthan gum polymer. Transmission electron microscopy (TEM) was used to evaluate the shape and size of the silver nanoparticles obtained. The silver ions in the nanocomposite were quantified by flame atomic absorption spectrometry (FAAS). The antibacterial activity of the nanomaterial against (ATCC 22652), (ATCC 29282), (ATCC 27853) and (ATCC 25923) was carried out using 500 mg of silver nanocomposite. and multidrug-resistant strains, isolated from hospitalized patients were also included in the study. The biosynthesized silver nanocomposite showed spherical nanoparticles with sizes smaller than 10 nm; 1 g of nanocomposite contained 49.24 µg of silver. Multidrug-resistant strains of and , and the other Gram-positive and Gram-negative bacteria tested, were sensitive to the silver nanocomposite (10-12.9 mm of inhibition zone). The biosynthesized silver nanocomposite seems to be a promising antibacterial agent for different applications, namely biomedical devices or topical wound coatings.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules21091255</identifier><identifier>PMID: 27657031</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>Acinetobacter baumannii ; antibacterial activity ; multidrug-resistance ; Pseudomonas aeruginosa ; silver nanocomposite biosynthesis</subject><ispartof>Molecules (Basel, Switzerland), 2016-09, Vol.21 (9), p.1255</ispartof><rights>2016 by the authors. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93</citedby><cites>FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274225/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274225/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27657031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva Santos, Klebson</creatorcontrib><creatorcontrib>Barbosa, Andriele Mendonça</creatorcontrib><creatorcontrib>Pereira da Costa, Luiz</creatorcontrib><creatorcontrib>Pinheiro, Malone Santos</creatorcontrib><creatorcontrib>Oliveira, Maria Beatriz Prior Pinto</creatorcontrib><creatorcontrib>Ferreira Padilha, Francine</creatorcontrib><title>Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, using a new green chemistry process, by the addition of silver nitrate (1.10 mol·L ) into a fermentative medium of spp. to produce a xanthan gum polymer. Transmission electron microscopy (TEM) was used to evaluate the shape and size of the silver nanoparticles obtained. The silver ions in the nanocomposite were quantified by flame atomic absorption spectrometry (FAAS). The antibacterial activity of the nanomaterial against (ATCC 22652), (ATCC 29282), (ATCC 27853) and (ATCC 25923) was carried out using 500 mg of silver nanocomposite. and multidrug-resistant strains, isolated from hospitalized patients were also included in the study. The biosynthesized silver nanocomposite showed spherical nanoparticles with sizes smaller than 10 nm; 1 g of nanocomposite contained 49.24 µg of silver. Multidrug-resistant strains of and , and the other Gram-positive and Gram-negative bacteria tested, were sensitive to the silver nanocomposite (10-12.9 mm of inhibition zone). The biosynthesized silver nanocomposite seems to be a promising antibacterial agent for different applications, namely biomedical devices or topical wound coatings.</description><subject>Acinetobacter baumannii</subject><subject>antibacterial activity</subject><subject>multidrug-resistance</subject><subject>Pseudomonas aeruginosa</subject><subject>silver nanocomposite biosynthesis</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkttu1DAQhiMEogd4AG6QL7lJsZ04iblAWioOlcpBFK6tsT3eukrsxXZW2ufghcmypWrF1Yxm_vlmNPqr6gWjZ00j6espjmjmETNnVDIuxKPqmLWc1g1t5eN7-VF1kvMNpZy1TDytjnjfiZ427Lj6feXHLSbyBUI0cdrE7AuSdz7mXSjXmH1-Q1aheA2mYPIwkpUpfuvLjsAafMiFfJ7H4m2a1_X3vb5AKOSqpH2TREe-ZZxtnGKATAAXmQ8xA4FgF5QPWOKBTTTME4Tg_bPqiYMx4_PbeFr9_PD-x_mn-vLrx4vz1WVt2k6U2jRmkE1nrZZGDxzswLVretDIqbPAmUbWguWmd66Rwg2t0Vo4zQdgvNOyOa0uDlwb4UZtkp8g7VQEr_4WYlorSMWbEdWCWN7b9bIHbAUFaQfRMugNd5SjoQvr7YG1mfWE1mBYPjA-gD7sBH-t1nGrOt63nIsF8OoWkOKvGXNRk88GxxECxjkrNgjZcy77vZQdpCbFnBO6uzWMqr0x1H_GWGZe3r_vbuKfE5o_lqW9KA</recordid><startdate>20160920</startdate><enddate>20160920</enddate><creator>Silva Santos, Klebson</creator><creator>Barbosa, Andriele Mendonça</creator><creator>Pereira da Costa, Luiz</creator><creator>Pinheiro, Malone Santos</creator><creator>Oliveira, Maria Beatriz Prior Pinto</creator><creator>Ferreira Padilha, Francine</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160920</creationdate><title>Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii</title><author>Silva Santos, Klebson ; Barbosa, Andriele Mendonça ; Pereira da Costa, Luiz ; Pinheiro, Malone Santos ; Oliveira, Maria Beatriz Prior Pinto ; Ferreira Padilha, Francine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acinetobacter baumannii</topic><topic>antibacterial activity</topic><topic>multidrug-resistance</topic><topic>Pseudomonas aeruginosa</topic><topic>silver nanocomposite biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva Santos, Klebson</creatorcontrib><creatorcontrib>Barbosa, Andriele Mendonça</creatorcontrib><creatorcontrib>Pereira da Costa, Luiz</creatorcontrib><creatorcontrib>Pinheiro, Malone Santos</creatorcontrib><creatorcontrib>Oliveira, Maria Beatriz Prior Pinto</creatorcontrib><creatorcontrib>Ferreira Padilha, Francine</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva Santos, Klebson</au><au>Barbosa, Andriele Mendonça</au><au>Pereira da Costa, Luiz</au><au>Pinheiro, Malone Santos</au><au>Oliveira, Maria Beatriz Prior Pinto</au><au>Ferreira Padilha, Francine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2016-09-20</date><risdate>2016</risdate><volume>21</volume><issue>9</issue><spage>1255</spage><pages>1255-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, using a new green chemistry process, by the addition of silver nitrate (1.10 mol·L ) into a fermentative medium of spp. to produce a xanthan gum polymer. Transmission electron microscopy (TEM) was used to evaluate the shape and size of the silver nanoparticles obtained. The silver ions in the nanocomposite were quantified by flame atomic absorption spectrometry (FAAS). The antibacterial activity of the nanomaterial against (ATCC 22652), (ATCC 29282), (ATCC 27853) and (ATCC 25923) was carried out using 500 mg of silver nanocomposite. and multidrug-resistant strains, isolated from hospitalized patients were also included in the study. The biosynthesized silver nanocomposite showed spherical nanoparticles with sizes smaller than 10 nm; 1 g of nanocomposite contained 49.24 µg of silver. Multidrug-resistant strains of and , and the other Gram-positive and Gram-negative bacteria tested, were sensitive to the silver nanocomposite (10-12.9 mm of inhibition zone). The biosynthesized silver nanocomposite seems to be a promising antibacterial agent for different applications, namely biomedical devices or topical wound coatings.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>27657031</pmid><doi>10.3390/molecules21091255</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2016-09, Vol.21 (9), p.1255
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7ff2556797ae450a9d8541a7c2f02ec0
source Publicly Available Content Database; PubMed Central
subjects Acinetobacter baumannii
antibacterial activity
multidrug-resistance
Pseudomonas aeruginosa
silver nanocomposite biosynthesis
title Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20Nanocomposite%20Biosynthesis:%20Antibacterial%20Activity%20against%20Multidrug-Resistant%20Strains%20of%20Pseudomonas%20aeruginosa%20and%20Acinetobacter%20baumannii&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Silva%20Santos,%20Klebson&rft.date=2016-09-20&rft.volume=21&rft.issue=9&rft.spage=1255&rft.pages=1255-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules21091255&rft_dat=%3Cproquest_doaj_%3E1859722975%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-c3c8936ddb9cb82ad82bf37abe20fda21be14ad2c7ff395f84cbb5fb28a126b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859722975&rft_id=info:pmid/27657031&rfr_iscdi=true