Loading…
Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques
There has been steady progress in the field of affective computing over the last two decades that has integrated artificial intelligence techniques in the construction of computational models of emotion. Having, as a purpose, the development of a system for treating phobias that would automatically...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-04, Vol.19 (7), p.1738 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3 |
container_end_page | |
container_issue | 7 |
container_start_page | 1738 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 19 |
creator | Bălan, Oana Moise, Gabriela Moldoveanu, Alin Leordeanu, Marius Moldoveanu, Florica |
description | There has been steady progress in the field of affective computing over the last two decades that has integrated artificial intelligence techniques in the construction of computational models of emotion. Having, as a purpose, the development of a system for treating phobias that would automatically determine fear levels and adapt exposure intensity based on the user's current affective state, we propose a comparative study between various machine and deep learning techniques (four deep neural network models, a stochastic configuration network, Support Vector Machine, Linear Discriminant Analysis, Random Forest and k-Nearest Neighbors), with and without feature selection, for recognizing and classifying fear levels based on the electroencephalogram (EEG) and peripheral data from the DEAP (Database for Emotion Analysis using Physiological signals) database. Fear was considered an emotion eliciting low valence, high arousal and low dominance. By dividing the ratings of valence/arousal/dominance emotion dimensions, we propose two paradigms for fear level estimation-the two-level (0-
and 1-
) and the four-level (0-
, 1-
, 2-
, 3-
) paradigms. Although all the methods provide good classification accuracies, the highest F scores have been obtained using the Random Forest Classifier-89.96% and 85.33% for the two-level and four-level fear evaluation modality. |
doi_str_mv | 10.3390/s19071738 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7ff731dc20f34084aa2fe4edfea8ea6e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7ff731dc20f34084aa2fe4edfea8ea6e</doaj_id><sourcerecordid>2209604385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3</originalsourceid><addsrcrecordid>eNpdkc1uEzEUhS1ERUtgwQugkdiURcA_E3u8QYLQQqUgNkUsrTv2deJoxi72pFLfHoeUqO3KR9efj47vIeQNox-E0PRjYZoqpkT3jJyxlrfzjnP6_IE-JS9L2VLKhRDdC3IqqFad7ugZ-X2JkJsV3uLQLAcoJfhgYQopNl-goGuquBjTfgBD8zWMGEvVpYHomh9gNyFifQ45hrhurtFuYvizw_KKnHgYCr6-P2fk1-XF9fL7fPXz29Xy82puW6mn-ULI3klJtfQoqWBUtpI5TT3FzveCKVwo73j9n2R80SvFheNKKAa9BupBzMjVwdcl2JqbHEbIdyZBMP8GKa8N5CnYAY3yXgnmLKdetLRrAbjHFp1H6BAkVq9PB6-bXT-isxinDMMj08c3MWzMOt0a2Sota6wZOb83yGm_hMmMoVgcBoiYdsXUJrSkregWFX33BN2mXa473lNcS6mkkJV6f6BsTqVk9McwjJp99eZYfWXfPkx_JP93Lf4CqjioiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229667636</pqid></control><display><type>article</type><title>Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Bălan, Oana ; Moise, Gabriela ; Moldoveanu, Alin ; Leordeanu, Marius ; Moldoveanu, Florica</creator><creatorcontrib>Bălan, Oana ; Moise, Gabriela ; Moldoveanu, Alin ; Leordeanu, Marius ; Moldoveanu, Florica</creatorcontrib><description>There has been steady progress in the field of affective computing over the last two decades that has integrated artificial intelligence techniques in the construction of computational models of emotion. Having, as a purpose, the development of a system for treating phobias that would automatically determine fear levels and adapt exposure intensity based on the user's current affective state, we propose a comparative study between various machine and deep learning techniques (four deep neural network models, a stochastic configuration network, Support Vector Machine, Linear Discriminant Analysis, Random Forest and k-Nearest Neighbors), with and without feature selection, for recognizing and classifying fear levels based on the electroencephalogram (EEG) and peripheral data from the DEAP (Database for Emotion Analysis using Physiological signals) database. Fear was considered an emotion eliciting low valence, high arousal and low dominance. By dividing the ratings of valence/arousal/dominance emotion dimensions, we propose two paradigms for fear level estimation-the two-level (0-
and 1-
) and the four-level (0-
, 1-
, 2-
, 3-
) paradigms. Although all the methods provide good classification accuracies, the highest F scores have been obtained using the Random Forest Classifier-89.96% and 85.33% for the two-level and four-level fear evaluation modality.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19071738</identifier><identifier>PMID: 30978980</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Affective computing ; Arousal ; Classification ; Comparative studies ; Discriminant analysis ; Electroencephalography ; emotional assessment ; Emotions ; Fear ; Fear & phobias ; fear classification ; Feature recognition ; feature selection ; Levels ; Neural networks ; Phobias ; Respiration ; Support vector machines</subject><ispartof>Sensors (Basel, Switzerland), 2019-04, Vol.19 (7), p.1738</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3</citedby><cites>FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3</cites><orcidid>0000-0002-1368-7249 ; 0000-0002-6822-2684 ; 0000-0002-8357-5840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2229667636/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2229667636?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30978980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bălan, Oana</creatorcontrib><creatorcontrib>Moise, Gabriela</creatorcontrib><creatorcontrib>Moldoveanu, Alin</creatorcontrib><creatorcontrib>Leordeanu, Marius</creatorcontrib><creatorcontrib>Moldoveanu, Florica</creatorcontrib><title>Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>There has been steady progress in the field of affective computing over the last two decades that has integrated artificial intelligence techniques in the construction of computational models of emotion. Having, as a purpose, the development of a system for treating phobias that would automatically determine fear levels and adapt exposure intensity based on the user's current affective state, we propose a comparative study between various machine and deep learning techniques (four deep neural network models, a stochastic configuration network, Support Vector Machine, Linear Discriminant Analysis, Random Forest and k-Nearest Neighbors), with and without feature selection, for recognizing and classifying fear levels based on the electroencephalogram (EEG) and peripheral data from the DEAP (Database for Emotion Analysis using Physiological signals) database. Fear was considered an emotion eliciting low valence, high arousal and low dominance. By dividing the ratings of valence/arousal/dominance emotion dimensions, we propose two paradigms for fear level estimation-the two-level (0-
and 1-
) and the four-level (0-
, 1-
, 2-
, 3-
) paradigms. Although all the methods provide good classification accuracies, the highest F scores have been obtained using the Random Forest Classifier-89.96% and 85.33% for the two-level and four-level fear evaluation modality.</description><subject>Affective computing</subject><subject>Arousal</subject><subject>Classification</subject><subject>Comparative studies</subject><subject>Discriminant analysis</subject><subject>Electroencephalography</subject><subject>emotional assessment</subject><subject>Emotions</subject><subject>Fear</subject><subject>Fear & phobias</subject><subject>fear classification</subject><subject>Feature recognition</subject><subject>feature selection</subject><subject>Levels</subject><subject>Neural networks</subject><subject>Phobias</subject><subject>Respiration</subject><subject>Support vector machines</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1uEzEUhS1ERUtgwQugkdiURcA_E3u8QYLQQqUgNkUsrTv2deJoxi72pFLfHoeUqO3KR9efj47vIeQNox-E0PRjYZoqpkT3jJyxlrfzjnP6_IE-JS9L2VLKhRDdC3IqqFad7ugZ-X2JkJsV3uLQLAcoJfhgYQopNl-goGuquBjTfgBD8zWMGEvVpYHomh9gNyFifQ45hrhurtFuYvizw_KKnHgYCr6-P2fk1-XF9fL7fPXz29Xy82puW6mn-ULI3klJtfQoqWBUtpI5TT3FzveCKVwo73j9n2R80SvFheNKKAa9BupBzMjVwdcl2JqbHEbIdyZBMP8GKa8N5CnYAY3yXgnmLKdetLRrAbjHFp1H6BAkVq9PB6-bXT-isxinDMMj08c3MWzMOt0a2Sota6wZOb83yGm_hMmMoVgcBoiYdsXUJrSkregWFX33BN2mXa473lNcS6mkkJV6f6BsTqVk9McwjJp99eZYfWXfPkx_JP93Lf4CqjioiQ</recordid><startdate>20190411</startdate><enddate>20190411</enddate><creator>Bălan, Oana</creator><creator>Moise, Gabriela</creator><creator>Moldoveanu, Alin</creator><creator>Leordeanu, Marius</creator><creator>Moldoveanu, Florica</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1368-7249</orcidid><orcidid>https://orcid.org/0000-0002-6822-2684</orcidid><orcidid>https://orcid.org/0000-0002-8357-5840</orcidid></search><sort><creationdate>20190411</creationdate><title>Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques</title><author>Bălan, Oana ; Moise, Gabriela ; Moldoveanu, Alin ; Leordeanu, Marius ; Moldoveanu, Florica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affective computing</topic><topic>Arousal</topic><topic>Classification</topic><topic>Comparative studies</topic><topic>Discriminant analysis</topic><topic>Electroencephalography</topic><topic>emotional assessment</topic><topic>Emotions</topic><topic>Fear</topic><topic>Fear & phobias</topic><topic>fear classification</topic><topic>Feature recognition</topic><topic>feature selection</topic><topic>Levels</topic><topic>Neural networks</topic><topic>Phobias</topic><topic>Respiration</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bălan, Oana</creatorcontrib><creatorcontrib>Moise, Gabriela</creatorcontrib><creatorcontrib>Moldoveanu, Alin</creatorcontrib><creatorcontrib>Leordeanu, Marius</creatorcontrib><creatorcontrib>Moldoveanu, Florica</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bălan, Oana</au><au>Moise, Gabriela</au><au>Moldoveanu, Alin</au><au>Leordeanu, Marius</au><au>Moldoveanu, Florica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-04-11</date><risdate>2019</risdate><volume>19</volume><issue>7</issue><spage>1738</spage><pages>1738-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>There has been steady progress in the field of affective computing over the last two decades that has integrated artificial intelligence techniques in the construction of computational models of emotion. Having, as a purpose, the development of a system for treating phobias that would automatically determine fear levels and adapt exposure intensity based on the user's current affective state, we propose a comparative study between various machine and deep learning techniques (four deep neural network models, a stochastic configuration network, Support Vector Machine, Linear Discriminant Analysis, Random Forest and k-Nearest Neighbors), with and without feature selection, for recognizing and classifying fear levels based on the electroencephalogram (EEG) and peripheral data from the DEAP (Database for Emotion Analysis using Physiological signals) database. Fear was considered an emotion eliciting low valence, high arousal and low dominance. By dividing the ratings of valence/arousal/dominance emotion dimensions, we propose two paradigms for fear level estimation-the two-level (0-
and 1-
) and the four-level (0-
, 1-
, 2-
, 3-
) paradigms. Although all the methods provide good classification accuracies, the highest F scores have been obtained using the Random Forest Classifier-89.96% and 85.33% for the two-level and four-level fear evaluation modality.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30978980</pmid><doi>10.3390/s19071738</doi><orcidid>https://orcid.org/0000-0002-1368-7249</orcidid><orcidid>https://orcid.org/0000-0002-6822-2684</orcidid><orcidid>https://orcid.org/0000-0002-8357-5840</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2019-04, Vol.19 (7), p.1738 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7ff731dc20f34084aa2fe4edfea8ea6e |
source | Publicly Available Content Database; PubMed Central |
subjects | Affective computing Arousal Classification Comparative studies Discriminant analysis Electroencephalography emotional assessment Emotions Fear Fear & phobias fear classification Feature recognition feature selection Levels Neural networks Phobias Respiration Support vector machines |
title | Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fear%20Level%20Classification%20Based%20on%20Emotional%20Dimensions%20and%20Machine%20Learning%20Techniques&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=B%C4%83lan,%20Oana&rft.date=2019-04-11&rft.volume=19&rft.issue=7&rft.spage=1738&rft.pages=1738-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19071738&rft_dat=%3Cproquest_doaj_%3E2209604385%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2229667636&rft_id=info:pmid/30978980&rfr_iscdi=true |