Loading…

Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques

There has been steady progress in the field of affective computing over the last two decades that has integrated artificial intelligence techniques in the construction of computational models of emotion. Having, as a purpose, the development of a system for treating phobias that would automatically...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-04, Vol.19 (7), p.1738
Main Authors: Bălan, Oana, Moise, Gabriela, Moldoveanu, Alin, Leordeanu, Marius, Moldoveanu, Florica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3
cites cdi_FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3
container_end_page
container_issue 7
container_start_page 1738
container_title Sensors (Basel, Switzerland)
container_volume 19
creator Bălan, Oana
Moise, Gabriela
Moldoveanu, Alin
Leordeanu, Marius
Moldoveanu, Florica
description There has been steady progress in the field of affective computing over the last two decades that has integrated artificial intelligence techniques in the construction of computational models of emotion. Having, as a purpose, the development of a system for treating phobias that would automatically determine fear levels and adapt exposure intensity based on the user's current affective state, we propose a comparative study between various machine and deep learning techniques (four deep neural network models, a stochastic configuration network, Support Vector Machine, Linear Discriminant Analysis, Random Forest and k-Nearest Neighbors), with and without feature selection, for recognizing and classifying fear levels based on the electroencephalogram (EEG) and peripheral data from the DEAP (Database for Emotion Analysis using Physiological signals) database. Fear was considered an emotion eliciting low valence, high arousal and low dominance. By dividing the ratings of valence/arousal/dominance emotion dimensions, we propose two paradigms for fear level estimation-the two-level (0- and 1- ) and the four-level (0- , 1- , 2- , 3- ) paradigms. Although all the methods provide good classification accuracies, the highest F scores have been obtained using the Random Forest Classifier-89.96% and 85.33% for the two-level and four-level fear evaluation modality.
doi_str_mv 10.3390/s19071738
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7ff731dc20f34084aa2fe4edfea8ea6e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7ff731dc20f34084aa2fe4edfea8ea6e</doaj_id><sourcerecordid>2209604385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3</originalsourceid><addsrcrecordid>eNpdkc1uEzEUhS1ERUtgwQugkdiURcA_E3u8QYLQQqUgNkUsrTv2deJoxi72pFLfHoeUqO3KR9efj47vIeQNox-E0PRjYZoqpkT3jJyxlrfzjnP6_IE-JS9L2VLKhRDdC3IqqFad7ugZ-X2JkJsV3uLQLAcoJfhgYQopNl-goGuquBjTfgBD8zWMGEvVpYHomh9gNyFifQ45hrhurtFuYvizw_KKnHgYCr6-P2fk1-XF9fL7fPXz29Xy82puW6mn-ULI3klJtfQoqWBUtpI5TT3FzveCKVwo73j9n2R80SvFheNKKAa9BupBzMjVwdcl2JqbHEbIdyZBMP8GKa8N5CnYAY3yXgnmLKdetLRrAbjHFp1H6BAkVq9PB6-bXT-isxinDMMj08c3MWzMOt0a2Sota6wZOb83yGm_hMmMoVgcBoiYdsXUJrSkregWFX33BN2mXa473lNcS6mkkJV6f6BsTqVk9McwjJp99eZYfWXfPkx_JP93Lf4CqjioiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229667636</pqid></control><display><type>article</type><title>Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Bălan, Oana ; Moise, Gabriela ; Moldoveanu, Alin ; Leordeanu, Marius ; Moldoveanu, Florica</creator><creatorcontrib>Bălan, Oana ; Moise, Gabriela ; Moldoveanu, Alin ; Leordeanu, Marius ; Moldoveanu, Florica</creatorcontrib><description>There has been steady progress in the field of affective computing over the last two decades that has integrated artificial intelligence techniques in the construction of computational models of emotion. Having, as a purpose, the development of a system for treating phobias that would automatically determine fear levels and adapt exposure intensity based on the user's current affective state, we propose a comparative study between various machine and deep learning techniques (four deep neural network models, a stochastic configuration network, Support Vector Machine, Linear Discriminant Analysis, Random Forest and k-Nearest Neighbors), with and without feature selection, for recognizing and classifying fear levels based on the electroencephalogram (EEG) and peripheral data from the DEAP (Database for Emotion Analysis using Physiological signals) database. Fear was considered an emotion eliciting low valence, high arousal and low dominance. By dividing the ratings of valence/arousal/dominance emotion dimensions, we propose two paradigms for fear level estimation-the two-level (0- and 1- ) and the four-level (0- , 1- , 2- , 3- ) paradigms. Although all the methods provide good classification accuracies, the highest F scores have been obtained using the Random Forest Classifier-89.96% and 85.33% for the two-level and four-level fear evaluation modality.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19071738</identifier><identifier>PMID: 30978980</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Affective computing ; Arousal ; Classification ; Comparative studies ; Discriminant analysis ; Electroencephalography ; emotional assessment ; Emotions ; Fear ; Fear &amp; phobias ; fear classification ; Feature recognition ; feature selection ; Levels ; Neural networks ; Phobias ; Respiration ; Support vector machines</subject><ispartof>Sensors (Basel, Switzerland), 2019-04, Vol.19 (7), p.1738</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3</citedby><cites>FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3</cites><orcidid>0000-0002-1368-7249 ; 0000-0002-6822-2684 ; 0000-0002-8357-5840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2229667636/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2229667636?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30978980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bălan, Oana</creatorcontrib><creatorcontrib>Moise, Gabriela</creatorcontrib><creatorcontrib>Moldoveanu, Alin</creatorcontrib><creatorcontrib>Leordeanu, Marius</creatorcontrib><creatorcontrib>Moldoveanu, Florica</creatorcontrib><title>Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>There has been steady progress in the field of affective computing over the last two decades that has integrated artificial intelligence techniques in the construction of computational models of emotion. Having, as a purpose, the development of a system for treating phobias that would automatically determine fear levels and adapt exposure intensity based on the user's current affective state, we propose a comparative study between various machine and deep learning techniques (four deep neural network models, a stochastic configuration network, Support Vector Machine, Linear Discriminant Analysis, Random Forest and k-Nearest Neighbors), with and without feature selection, for recognizing and classifying fear levels based on the electroencephalogram (EEG) and peripheral data from the DEAP (Database for Emotion Analysis using Physiological signals) database. Fear was considered an emotion eliciting low valence, high arousal and low dominance. By dividing the ratings of valence/arousal/dominance emotion dimensions, we propose two paradigms for fear level estimation-the two-level (0- and 1- ) and the four-level (0- , 1- , 2- , 3- ) paradigms. Although all the methods provide good classification accuracies, the highest F scores have been obtained using the Random Forest Classifier-89.96% and 85.33% for the two-level and four-level fear evaluation modality.</description><subject>Affective computing</subject><subject>Arousal</subject><subject>Classification</subject><subject>Comparative studies</subject><subject>Discriminant analysis</subject><subject>Electroencephalography</subject><subject>emotional assessment</subject><subject>Emotions</subject><subject>Fear</subject><subject>Fear &amp; phobias</subject><subject>fear classification</subject><subject>Feature recognition</subject><subject>feature selection</subject><subject>Levels</subject><subject>Neural networks</subject><subject>Phobias</subject><subject>Respiration</subject><subject>Support vector machines</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1uEzEUhS1ERUtgwQugkdiURcA_E3u8QYLQQqUgNkUsrTv2deJoxi72pFLfHoeUqO3KR9efj47vIeQNox-E0PRjYZoqpkT3jJyxlrfzjnP6_IE-JS9L2VLKhRDdC3IqqFad7ugZ-X2JkJsV3uLQLAcoJfhgYQopNl-goGuquBjTfgBD8zWMGEvVpYHomh9gNyFifQ45hrhurtFuYvizw_KKnHgYCr6-P2fk1-XF9fL7fPXz29Xy82puW6mn-ULI3klJtfQoqWBUtpI5TT3FzveCKVwo73j9n2R80SvFheNKKAa9BupBzMjVwdcl2JqbHEbIdyZBMP8GKa8N5CnYAY3yXgnmLKdetLRrAbjHFp1H6BAkVq9PB6-bXT-isxinDMMj08c3MWzMOt0a2Sota6wZOb83yGm_hMmMoVgcBoiYdsXUJrSkregWFX33BN2mXa473lNcS6mkkJV6f6BsTqVk9McwjJp99eZYfWXfPkx_JP93Lf4CqjioiQ</recordid><startdate>20190411</startdate><enddate>20190411</enddate><creator>Bălan, Oana</creator><creator>Moise, Gabriela</creator><creator>Moldoveanu, Alin</creator><creator>Leordeanu, Marius</creator><creator>Moldoveanu, Florica</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1368-7249</orcidid><orcidid>https://orcid.org/0000-0002-6822-2684</orcidid><orcidid>https://orcid.org/0000-0002-8357-5840</orcidid></search><sort><creationdate>20190411</creationdate><title>Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques</title><author>Bălan, Oana ; Moise, Gabriela ; Moldoveanu, Alin ; Leordeanu, Marius ; Moldoveanu, Florica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affective computing</topic><topic>Arousal</topic><topic>Classification</topic><topic>Comparative studies</topic><topic>Discriminant analysis</topic><topic>Electroencephalography</topic><topic>emotional assessment</topic><topic>Emotions</topic><topic>Fear</topic><topic>Fear &amp; phobias</topic><topic>fear classification</topic><topic>Feature recognition</topic><topic>feature selection</topic><topic>Levels</topic><topic>Neural networks</topic><topic>Phobias</topic><topic>Respiration</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bălan, Oana</creatorcontrib><creatorcontrib>Moise, Gabriela</creatorcontrib><creatorcontrib>Moldoveanu, Alin</creatorcontrib><creatorcontrib>Leordeanu, Marius</creatorcontrib><creatorcontrib>Moldoveanu, Florica</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bălan, Oana</au><au>Moise, Gabriela</au><au>Moldoveanu, Alin</au><au>Leordeanu, Marius</au><au>Moldoveanu, Florica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-04-11</date><risdate>2019</risdate><volume>19</volume><issue>7</issue><spage>1738</spage><pages>1738-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>There has been steady progress in the field of affective computing over the last two decades that has integrated artificial intelligence techniques in the construction of computational models of emotion. Having, as a purpose, the development of a system for treating phobias that would automatically determine fear levels and adapt exposure intensity based on the user's current affective state, we propose a comparative study between various machine and deep learning techniques (four deep neural network models, a stochastic configuration network, Support Vector Machine, Linear Discriminant Analysis, Random Forest and k-Nearest Neighbors), with and without feature selection, for recognizing and classifying fear levels based on the electroencephalogram (EEG) and peripheral data from the DEAP (Database for Emotion Analysis using Physiological signals) database. Fear was considered an emotion eliciting low valence, high arousal and low dominance. By dividing the ratings of valence/arousal/dominance emotion dimensions, we propose two paradigms for fear level estimation-the two-level (0- and 1- ) and the four-level (0- , 1- , 2- , 3- ) paradigms. Although all the methods provide good classification accuracies, the highest F scores have been obtained using the Random Forest Classifier-89.96% and 85.33% for the two-level and four-level fear evaluation modality.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30978980</pmid><doi>10.3390/s19071738</doi><orcidid>https://orcid.org/0000-0002-1368-7249</orcidid><orcidid>https://orcid.org/0000-0002-6822-2684</orcidid><orcidid>https://orcid.org/0000-0002-8357-5840</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2019-04, Vol.19 (7), p.1738
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7ff731dc20f34084aa2fe4edfea8ea6e
source Publicly Available Content Database; PubMed Central
subjects Affective computing
Arousal
Classification
Comparative studies
Discriminant analysis
Electroencephalography
emotional assessment
Emotions
Fear
Fear & phobias
fear classification
Feature recognition
feature selection
Levels
Neural networks
Phobias
Respiration
Support vector machines
title Fear Level Classification Based on Emotional Dimensions and Machine Learning Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fear%20Level%20Classification%20Based%20on%20Emotional%20Dimensions%20and%20Machine%20Learning%20Techniques&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=B%C4%83lan,%20Oana&rft.date=2019-04-11&rft.volume=19&rft.issue=7&rft.spage=1738&rft.pages=1738-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19071738&rft_dat=%3Cproquest_doaj_%3E2209604385%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-536bd66096fe603106461d90f0e8fb317e57fd21906125b7723d27371ab9a0fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2229667636&rft_id=info:pmid/30978980&rfr_iscdi=true