Loading…

Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model

The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded...

Full description

Saved in:
Bibliographic Details
Published in:Cyborg and bionic systems 2021-01, Vol.2021, p.9794610-9794610
Main Authors: Bai, Dianchun, Liu, Tie, Han, Xinghua, Yi, Hongyu
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23
cites cdi_FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23
container_end_page 9794610
container_issue
container_start_page 9794610
container_title Cyborg and bionic systems
container_volume 2021
creator Bai, Dianchun
Liu, Tie
Han, Xinghua
Yi, Hongyu
description The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded chip with small storage space, this paper presents a feature model construction and optimization method based on multichannel sEMG amplification unit. The feature model is established by using multidimensional sequential sEMG images by combining convolutional neural network and long-term memory network to solve the problem of multistate sEMG signal recognition. The experimental results show that under the same network structure, the sEMG signal with fast Fourier transform and root mean square as feature data processing has a good recognition rate, and the recognition accuracy of complex gestures is 91.40%, with the size of 1 MB. The model can still control the artificial hand accurately when the model is small and the precision is high.
doi_str_mv 10.34133/2021/9794610
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_801366f59fad4fb3b10248f293a51173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_801366f59fad4fb3b10248f293a51173</doaj_id><sourcerecordid>2729028894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23</originalsourceid><addsrcrecordid>eNpVkc1r3DAQxU1IoSHNsXcfA8FZfdj6uAQ2S7oN7CbQJGchSyNbwbYcyRto__o6u0tpTjPMvPk9mJdl3zG6piWmdEEQwQvJZckwOsnOCJOk4IyS0__6r9lFSq8IISJ4xYk4y9rlOHbe6MmHIf8FCXQ0bT73j-Pke__nsFh2TYh-avs8uDzdbdf5GtK0izCfmNAMfq-61Qnsx-3GN-2Urx4erjZPz9t8Gyx037IvTncJLo71PHv5cfe8-llsHtf3q-WmMCVFU4EtM1hq5oSjjlkpaFULQUlNdQWcI2BAam1MbZ3AvGJQaVpLEBWhFdKW0PPs_sC1Qb-qMfpex98qaK_2gxAbpePkTQdKIEwZc5V02paupjVGpBSOyNkLY05n1s2BNe7qHqyBYYq6-wT9vBl8q5rwrmQpS47RDLg8AmJ4280vU71PBrpODxB2SRFO5JyFkOUsLQ5SE0NKEdw_G4zUPmH1kbA6Jkz_ArS1mEk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729028894</pqid></control><display><type>article</type><title>Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model</title><source>PubMed (Medline)</source><creator>Bai, Dianchun ; Liu, Tie ; Han, Xinghua ; Yi, Hongyu</creator><creatorcontrib>Bai, Dianchun ; Liu, Tie ; Han, Xinghua ; Yi, Hongyu</creatorcontrib><description>The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded chip with small storage space, this paper presents a feature model construction and optimization method based on multichannel sEMG amplification unit. The feature model is established by using multidimensional sequential sEMG images by combining convolutional neural network and long-term memory network to solve the problem of multistate sEMG signal recognition. The experimental results show that under the same network structure, the sEMG signal with fast Fourier transform and root mean square as feature data processing has a good recognition rate, and the recognition accuracy of complex gestures is 91.40%, with the size of 1 MB. The model can still control the artificial hand accurately when the model is small and the precision is high.</description><identifier>ISSN: 2692-7632</identifier><identifier>ISSN: 2097-1087</identifier><identifier>EISSN: 2692-7632</identifier><identifier>DOI: 10.34133/2021/9794610</identifier><language>eng</language><publisher>AAAS</publisher><ispartof>Cyborg and bionic systems, 2021-01, Vol.2021, p.9794610-9794610</ispartof><rights>Copyright © 2021 Dianchun Bai et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23</citedby><cites>FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23</cites><orcidid>0000-0002-3976-1048 ; 0000-0001-5642-9605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494710/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494710/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Bai, Dianchun</creatorcontrib><creatorcontrib>Liu, Tie</creatorcontrib><creatorcontrib>Han, Xinghua</creatorcontrib><creatorcontrib>Yi, Hongyu</creatorcontrib><title>Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model</title><title>Cyborg and bionic systems</title><description>The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded chip with small storage space, this paper presents a feature model construction and optimization method based on multichannel sEMG amplification unit. The feature model is established by using multidimensional sequential sEMG images by combining convolutional neural network and long-term memory network to solve the problem of multistate sEMG signal recognition. The experimental results show that under the same network structure, the sEMG signal with fast Fourier transform and root mean square as feature data processing has a good recognition rate, and the recognition accuracy of complex gestures is 91.40%, with the size of 1 MB. The model can still control the artificial hand accurately when the model is small and the precision is high.</description><issn>2692-7632</issn><issn>2097-1087</issn><issn>2692-7632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc1r3DAQxU1IoSHNsXcfA8FZfdj6uAQ2S7oN7CbQJGchSyNbwbYcyRto__o6u0tpTjPMvPk9mJdl3zG6piWmdEEQwQvJZckwOsnOCJOk4IyS0__6r9lFSq8IISJ4xYk4y9rlOHbe6MmHIf8FCXQ0bT73j-Pke__nsFh2TYh-avs8uDzdbdf5GtK0izCfmNAMfq-61Qnsx-3GN-2Urx4erjZPz9t8Gyx037IvTncJLo71PHv5cfe8-llsHtf3q-WmMCVFU4EtM1hq5oSjjlkpaFULQUlNdQWcI2BAam1MbZ3AvGJQaVpLEBWhFdKW0PPs_sC1Qb-qMfpex98qaK_2gxAbpePkTQdKIEwZc5V02paupjVGpBSOyNkLY05n1s2BNe7qHqyBYYq6-wT9vBl8q5rwrmQpS47RDLg8AmJ4280vU71PBrpODxB2SRFO5JyFkOUsLQ5SE0NKEdw_G4zUPmH1kbA6Jkz_ArS1mEk</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Bai, Dianchun</creator><creator>Liu, Tie</creator><creator>Han, Xinghua</creator><creator>Yi, Hongyu</creator><general>AAAS</general><general>American Association for the Advancement of Science (AAAS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3976-1048</orcidid><orcidid>https://orcid.org/0000-0001-5642-9605</orcidid></search><sort><creationdate>20210101</creationdate><title>Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model</title><author>Bai, Dianchun ; Liu, Tie ; Han, Xinghua ; Yi, Hongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Dianchun</creatorcontrib><creatorcontrib>Liu, Tie</creatorcontrib><creatorcontrib>Han, Xinghua</creatorcontrib><creatorcontrib>Yi, Hongyu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cyborg and bionic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Dianchun</au><au>Liu, Tie</au><au>Han, Xinghua</au><au>Yi, Hongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model</atitle><jtitle>Cyborg and bionic systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>2021</volume><spage>9794610</spage><epage>9794610</epage><pages>9794610-9794610</pages><issn>2692-7632</issn><issn>2097-1087</issn><eissn>2692-7632</eissn><abstract>The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded chip with small storage space, this paper presents a feature model construction and optimization method based on multichannel sEMG amplification unit. The feature model is established by using multidimensional sequential sEMG images by combining convolutional neural network and long-term memory network to solve the problem of multistate sEMG signal recognition. The experimental results show that under the same network structure, the sEMG signal with fast Fourier transform and root mean square as feature data processing has a good recognition rate, and the recognition accuracy of complex gestures is 91.40%, with the size of 1 MB. The model can still control the artificial hand accurately when the model is small and the precision is high.</abstract><pub>AAAS</pub><doi>10.34133/2021/9794610</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3976-1048</orcidid><orcidid>https://orcid.org/0000-0001-5642-9605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2692-7632
ispartof Cyborg and bionic systems, 2021-01, Vol.2021, p.9794610-9794610
issn 2692-7632
2097-1087
2692-7632
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_801366f59fad4fb3b10248f293a51173
source PubMed (Medline)
title Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20Research%20on%20Optimization%20Algorithm%20of%20sEMG%20Gesture%20Recognition%20Based%20on%20Light%20CNN+LSTM%20Model&rft.jtitle=Cyborg%20and%20bionic%20systems&rft.au=Bai,%20Dianchun&rft.date=2021-01-01&rft.volume=2021&rft.spage=9794610&rft.epage=9794610&rft.pages=9794610-9794610&rft.issn=2692-7632&rft.eissn=2692-7632&rft_id=info:doi/10.34133/2021/9794610&rft_dat=%3Cproquest_doaj_%3E2729028894%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2729028894&rft_id=info:pmid/&rfr_iscdi=true