Loading…
Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model
The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded...
Saved in:
Published in: | Cyborg and bionic systems 2021-01, Vol.2021, p.9794610-9794610 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23 |
container_end_page | 9794610 |
container_issue | |
container_start_page | 9794610 |
container_title | Cyborg and bionic systems |
container_volume | 2021 |
creator | Bai, Dianchun Liu, Tie Han, Xinghua Yi, Hongyu |
description | The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded chip with small storage space, this paper presents a feature model construction and optimization method based on multichannel sEMG amplification unit. The feature model is established by using multidimensional sequential sEMG images by combining convolutional neural network and long-term memory network to solve the problem of multistate sEMG signal recognition. The experimental results show that under the same network structure, the sEMG signal with fast Fourier transform and root mean square as feature data processing has a good recognition rate, and the recognition accuracy of complex gestures is 91.40%, with the size of 1 MB. The model can still control the artificial hand accurately when the model is small and the precision is high. |
doi_str_mv | 10.34133/2021/9794610 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_801366f59fad4fb3b10248f293a51173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_801366f59fad4fb3b10248f293a51173</doaj_id><sourcerecordid>2729028894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23</originalsourceid><addsrcrecordid>eNpVkc1r3DAQxU1IoSHNsXcfA8FZfdj6uAQ2S7oN7CbQJGchSyNbwbYcyRto__o6u0tpTjPMvPk9mJdl3zG6piWmdEEQwQvJZckwOsnOCJOk4IyS0__6r9lFSq8IISJ4xYk4y9rlOHbe6MmHIf8FCXQ0bT73j-Pke__nsFh2TYh-avs8uDzdbdf5GtK0izCfmNAMfq-61Qnsx-3GN-2Urx4erjZPz9t8Gyx037IvTncJLo71PHv5cfe8-llsHtf3q-WmMCVFU4EtM1hq5oSjjlkpaFULQUlNdQWcI2BAam1MbZ3AvGJQaVpLEBWhFdKW0PPs_sC1Qb-qMfpex98qaK_2gxAbpePkTQdKIEwZc5V02paupjVGpBSOyNkLY05n1s2BNe7qHqyBYYq6-wT9vBl8q5rwrmQpS47RDLg8AmJ4280vU71PBrpODxB2SRFO5JyFkOUsLQ5SE0NKEdw_G4zUPmH1kbA6Jkz_ArS1mEk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729028894</pqid></control><display><type>article</type><title>Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model</title><source>PubMed (Medline)</source><creator>Bai, Dianchun ; Liu, Tie ; Han, Xinghua ; Yi, Hongyu</creator><creatorcontrib>Bai, Dianchun ; Liu, Tie ; Han, Xinghua ; Yi, Hongyu</creatorcontrib><description>The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded chip with small storage space, this paper presents a feature model construction and optimization method based on multichannel sEMG amplification unit. The feature model is established by using multidimensional sequential sEMG images by combining convolutional neural network and long-term memory network to solve the problem of multistate sEMG signal recognition. The experimental results show that under the same network structure, the sEMG signal with fast Fourier transform and root mean square as feature data processing has a good recognition rate, and the recognition accuracy of complex gestures is 91.40%, with the size of 1 MB. The model can still control the artificial hand accurately when the model is small and the precision is high.</description><identifier>ISSN: 2692-7632</identifier><identifier>ISSN: 2097-1087</identifier><identifier>EISSN: 2692-7632</identifier><identifier>DOI: 10.34133/2021/9794610</identifier><language>eng</language><publisher>AAAS</publisher><ispartof>Cyborg and bionic systems, 2021-01, Vol.2021, p.9794610-9794610</ispartof><rights>Copyright © 2021 Dianchun Bai et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23</citedby><cites>FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23</cites><orcidid>0000-0002-3976-1048 ; 0000-0001-5642-9605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494710/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494710/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Bai, Dianchun</creatorcontrib><creatorcontrib>Liu, Tie</creatorcontrib><creatorcontrib>Han, Xinghua</creatorcontrib><creatorcontrib>Yi, Hongyu</creatorcontrib><title>Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model</title><title>Cyborg and bionic systems</title><description>The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded chip with small storage space, this paper presents a feature model construction and optimization method based on multichannel sEMG amplification unit. The feature model is established by using multidimensional sequential sEMG images by combining convolutional neural network and long-term memory network to solve the problem of multistate sEMG signal recognition. The experimental results show that under the same network structure, the sEMG signal with fast Fourier transform and root mean square as feature data processing has a good recognition rate, and the recognition accuracy of complex gestures is 91.40%, with the size of 1 MB. The model can still control the artificial hand accurately when the model is small and the precision is high.</description><issn>2692-7632</issn><issn>2097-1087</issn><issn>2692-7632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc1r3DAQxU1IoSHNsXcfA8FZfdj6uAQ2S7oN7CbQJGchSyNbwbYcyRto__o6u0tpTjPMvPk9mJdl3zG6piWmdEEQwQvJZckwOsnOCJOk4IyS0__6r9lFSq8IISJ4xYk4y9rlOHbe6MmHIf8FCXQ0bT73j-Pke__nsFh2TYh-avs8uDzdbdf5GtK0izCfmNAMfq-61Qnsx-3GN-2Urx4erjZPz9t8Gyx037IvTncJLo71PHv5cfe8-llsHtf3q-WmMCVFU4EtM1hq5oSjjlkpaFULQUlNdQWcI2BAam1MbZ3AvGJQaVpLEBWhFdKW0PPs_sC1Qb-qMfpex98qaK_2gxAbpePkTQdKIEwZc5V02paupjVGpBSOyNkLY05n1s2BNe7qHqyBYYq6-wT9vBl8q5rwrmQpS47RDLg8AmJ4280vU71PBrpODxB2SRFO5JyFkOUsLQ5SE0NKEdw_G4zUPmH1kbA6Jkz_ArS1mEk</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Bai, Dianchun</creator><creator>Liu, Tie</creator><creator>Han, Xinghua</creator><creator>Yi, Hongyu</creator><general>AAAS</general><general>American Association for the Advancement of Science (AAAS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3976-1048</orcidid><orcidid>https://orcid.org/0000-0001-5642-9605</orcidid></search><sort><creationdate>20210101</creationdate><title>Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model</title><author>Bai, Dianchun ; Liu, Tie ; Han, Xinghua ; Yi, Hongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Dianchun</creatorcontrib><creatorcontrib>Liu, Tie</creatorcontrib><creatorcontrib>Han, Xinghua</creatorcontrib><creatorcontrib>Yi, Hongyu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cyborg and bionic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Dianchun</au><au>Liu, Tie</au><au>Han, Xinghua</au><au>Yi, Hongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model</atitle><jtitle>Cyborg and bionic systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>2021</volume><spage>9794610</spage><epage>9794610</epage><pages>9794610-9794610</pages><issn>2692-7632</issn><issn>2097-1087</issn><eissn>2692-7632</eissn><abstract>The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded chip with small storage space, this paper presents a feature model construction and optimization method based on multichannel sEMG amplification unit. The feature model is established by using multidimensional sequential sEMG images by combining convolutional neural network and long-term memory network to solve the problem of multistate sEMG signal recognition. The experimental results show that under the same network structure, the sEMG signal with fast Fourier transform and root mean square as feature data processing has a good recognition rate, and the recognition accuracy of complex gestures is 91.40%, with the size of 1 MB. The model can still control the artificial hand accurately when the model is small and the precision is high.</abstract><pub>AAAS</pub><doi>10.34133/2021/9794610</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3976-1048</orcidid><orcidid>https://orcid.org/0000-0001-5642-9605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2692-7632 |
ispartof | Cyborg and bionic systems, 2021-01, Vol.2021, p.9794610-9794610 |
issn | 2692-7632 2097-1087 2692-7632 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_801366f59fad4fb3b10248f293a51173 |
source | PubMed (Medline) |
title | Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20Research%20on%20Optimization%20Algorithm%20of%20sEMG%20Gesture%20Recognition%20Based%20on%20Light%20CNN+LSTM%20Model&rft.jtitle=Cyborg%20and%20bionic%20systems&rft.au=Bai,%20Dianchun&rft.date=2021-01-01&rft.volume=2021&rft.spage=9794610&rft.epage=9794610&rft.pages=9794610-9794610&rft.issn=2692-7632&rft.eissn=2692-7632&rft_id=info:doi/10.34133/2021/9794610&rft_dat=%3Cproquest_doaj_%3E2729028894%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-1d6c19a6f8f3f6d9835b8832b3a5e770e6e2baccbdf81756e5a3b9e852350ad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2729028894&rft_id=info:pmid/&rfr_iscdi=true |