Loading…
Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images
Scene recognition is still a very important topic in many fields, and that is definitely the case in robotics. Nevertheless, this task is view-dependent, which implies the existence of preferable directions when recognizing a particular scene. Both in human and computer vision-based classification,...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-09, Vol.19 (18), p.4024 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3 |
container_end_page | |
container_issue | 18 |
container_start_page | 4024 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 19 |
creator | Santos, David Lopez-Lopez, Eric Pardo, Xosé M. Iglesias, Roberto Barro, Senén Fdez-Vidal, Xosé R. |
description | Scene recognition is still a very important topic in many fields, and that is definitely the case in robotics. Nevertheless, this task is view-dependent, which implies the existence of preferable directions when recognizing a particular scene. Both in human and computer vision-based classification, this actually often turns out to be biased. In our case, instead of trying to improve the generalization capability for different view directions, we have opted for the development of a system capable of filtering out noisy or meaningless images while, on the contrary, retaining those views from which is likely feasible that the correct identification of the scene can be made. Our proposal works with a heuristic metric based on the detection of key points in 3D meshes (Harris 3D). This metric is later used to build a model that combines a Minimum Spanning Tree and a Support Vector Machine (SVM). We have performed an extensive number of experiments through which we have addressed (a) the search for efficient visual descriptors, (b) the analysis of the extent to which our heuristic metric resembles the human criteria for relevance and, finally, (c) the experimental validation of our complete proposal. In the experiments, we have used both a public image database and images collected at our research center. |
doi_str_mv | 10.3390/s19184024 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8020ab5599d845aeb69c9a6ceafd4f59</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8020ab5599d845aeb69c9a6ceafd4f59</doaj_id><sourcerecordid>2295484820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3</originalsourceid><addsrcrecordid>eNp9ks1rFTEQwBdR7Ice_A8CXvTwNN-bXIRSrH1QEWo9h9nsZF8eu0nd7Bb87419pVgPnmaY_ObHZJimecPoByEs_ViYZUZSLp81x0xyuTGc0-d_5UfNSSl7SrkQwrxsjgRTkkoljpvhOndrWQiknlxATb57TEiu0echxSXmRGIiFcpL9IXc7Oa8Djuy7JCcrUueoJbJtse0xBA93DfkQL4ipJiGsI5kO8GA5VXzIsBY8PVDPG1-XHy-Ob_cXH37sj0_u9p42cplo7vOeM2EQNlREAq91hStr9_0rQ7ANTLa9xxbrkCrEJTnyrRBBa-xhSBOm-3B22fYu9s5TjD_chmiuy_keXAw15lHdIZyCp1S1vZGKsBOW29Be4TQy6BsdX06uG7XbsK-LmaZYXwiffqS4s4N-c7pVre8FVXw7kEw558rlsVNsXgcR0iY1-I4t0oaaTit6Nt_0H1e51RX5bgSlTKa6_9SgjLLBbOqUu8PlJ9zKTOGx5EZdX8Oxj0ejPgNGfCxVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301923195</pqid></control><display><type>article</type><title>Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Santos, David ; Lopez-Lopez, Eric ; Pardo, Xosé M. ; Iglesias, Roberto ; Barro, Senén ; Fdez-Vidal, Xosé R.</creator><creatorcontrib>Santos, David ; Lopez-Lopez, Eric ; Pardo, Xosé M. ; Iglesias, Roberto ; Barro, Senén ; Fdez-Vidal, Xosé R.</creatorcontrib><description>Scene recognition is still a very important topic in many fields, and that is definitely the case in robotics. Nevertheless, this task is view-dependent, which implies the existence of preferable directions when recognizing a particular scene. Both in human and computer vision-based classification, this actually often turns out to be biased. In our case, instead of trying to improve the generalization capability for different view directions, we have opted for the development of a system capable of filtering out noisy or meaningless images while, on the contrary, retaining those views from which is likely feasible that the correct identification of the scene can be made. Our proposal works with a heuristic metric based on the detection of key points in 3D meshes (Harris 3D). This metric is later used to build a model that combines a Minimum Spanning Tree and a Support Vector Machine (SVM). We have performed an extensive number of experiments through which we have addressed (a) the search for efficient visual descriptors, (b) the analysis of the extent to which our heuristic metric resembles the human criteria for relevance and, finally, (c) the experimental validation of our complete proposal. In the experiments, we have used both a public image database and images collected at our research center.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19184024</identifier><identifier>PMID: 31540453</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Architecture ; Computer vision ; Global positioning systems ; GPS ; Graph theory ; image collection summarization ; Image databases ; International conferences ; Localization ; meaningful images ; Pattern recognition ; Power ; Research facilities ; Robotics ; Robots ; scene recognition ; Sensors ; Support vector machines</subject><ispartof>Sensors (Basel, Switzerland), 2019-09, Vol.19 (18), p.4024</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3</citedby><cites>FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3</cites><orcidid>0000-0001-9388-7461 ; 0000-0002-3997-5150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535488626/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535488626?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Santos, David</creatorcontrib><creatorcontrib>Lopez-Lopez, Eric</creatorcontrib><creatorcontrib>Pardo, Xosé M.</creatorcontrib><creatorcontrib>Iglesias, Roberto</creatorcontrib><creatorcontrib>Barro, Senén</creatorcontrib><creatorcontrib>Fdez-Vidal, Xosé R.</creatorcontrib><title>Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images</title><title>Sensors (Basel, Switzerland)</title><description>Scene recognition is still a very important topic in many fields, and that is definitely the case in robotics. Nevertheless, this task is view-dependent, which implies the existence of preferable directions when recognizing a particular scene. Both in human and computer vision-based classification, this actually often turns out to be biased. In our case, instead of trying to improve the generalization capability for different view directions, we have opted for the development of a system capable of filtering out noisy or meaningless images while, on the contrary, retaining those views from which is likely feasible that the correct identification of the scene can be made. Our proposal works with a heuristic metric based on the detection of key points in 3D meshes (Harris 3D). This metric is later used to build a model that combines a Minimum Spanning Tree and a Support Vector Machine (SVM). We have performed an extensive number of experiments through which we have addressed (a) the search for efficient visual descriptors, (b) the analysis of the extent to which our heuristic metric resembles the human criteria for relevance and, finally, (c) the experimental validation of our complete proposal. In the experiments, we have used both a public image database and images collected at our research center.</description><subject>Architecture</subject><subject>Computer vision</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Graph theory</subject><subject>image collection summarization</subject><subject>Image databases</subject><subject>International conferences</subject><subject>Localization</subject><subject>meaningful images</subject><subject>Pattern recognition</subject><subject>Power</subject><subject>Research facilities</subject><subject>Robotics</subject><subject>Robots</subject><subject>scene recognition</subject><subject>Sensors</subject><subject>Support vector machines</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1rFTEQwBdR7Ice_A8CXvTwNN-bXIRSrH1QEWo9h9nsZF8eu0nd7Bb87419pVgPnmaY_ObHZJimecPoByEs_ViYZUZSLp81x0xyuTGc0-d_5UfNSSl7SrkQwrxsjgRTkkoljpvhOndrWQiknlxATb57TEiu0echxSXmRGIiFcpL9IXc7Oa8Djuy7JCcrUueoJbJtse0xBA93DfkQL4ipJiGsI5kO8GA5VXzIsBY8PVDPG1-XHy-Ob_cXH37sj0_u9p42cplo7vOeM2EQNlREAq91hStr9_0rQ7ANTLa9xxbrkCrEJTnyrRBBa-xhSBOm-3B22fYu9s5TjD_chmiuy_keXAw15lHdIZyCp1S1vZGKsBOW29Be4TQy6BsdX06uG7XbsK-LmaZYXwiffqS4s4N-c7pVre8FVXw7kEw558rlsVNsXgcR0iY1-I4t0oaaTit6Nt_0H1e51RX5bgSlTKa6_9SgjLLBbOqUu8PlJ9zKTOGx5EZdX8Oxj0ejPgNGfCxVA</recordid><startdate>20190918</startdate><enddate>20190918</enddate><creator>Santos, David</creator><creator>Lopez-Lopez, Eric</creator><creator>Pardo, Xosé M.</creator><creator>Iglesias, Roberto</creator><creator>Barro, Senén</creator><creator>Fdez-Vidal, Xosé R.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9388-7461</orcidid><orcidid>https://orcid.org/0000-0002-3997-5150</orcidid></search><sort><creationdate>20190918</creationdate><title>Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images</title><author>Santos, David ; Lopez-Lopez, Eric ; Pardo, Xosé M. ; Iglesias, Roberto ; Barro, Senén ; Fdez-Vidal, Xosé R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Computer vision</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Graph theory</topic><topic>image collection summarization</topic><topic>Image databases</topic><topic>International conferences</topic><topic>Localization</topic><topic>meaningful images</topic><topic>Pattern recognition</topic><topic>Power</topic><topic>Research facilities</topic><topic>Robotics</topic><topic>Robots</topic><topic>scene recognition</topic><topic>Sensors</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, David</creatorcontrib><creatorcontrib>Lopez-Lopez, Eric</creatorcontrib><creatorcontrib>Pardo, Xosé M.</creatorcontrib><creatorcontrib>Iglesias, Roberto</creatorcontrib><creatorcontrib>Barro, Senén</creatorcontrib><creatorcontrib>Fdez-Vidal, Xosé R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, David</au><au>Lopez-Lopez, Eric</au><au>Pardo, Xosé M.</au><au>Iglesias, Roberto</au><au>Barro, Senén</au><au>Fdez-Vidal, Xosé R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2019-09-18</date><risdate>2019</risdate><volume>19</volume><issue>18</issue><spage>4024</spage><pages>4024-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Scene recognition is still a very important topic in many fields, and that is definitely the case in robotics. Nevertheless, this task is view-dependent, which implies the existence of preferable directions when recognizing a particular scene. Both in human and computer vision-based classification, this actually often turns out to be biased. In our case, instead of trying to improve the generalization capability for different view directions, we have opted for the development of a system capable of filtering out noisy or meaningless images while, on the contrary, retaining those views from which is likely feasible that the correct identification of the scene can be made. Our proposal works with a heuristic metric based on the detection of key points in 3D meshes (Harris 3D). This metric is later used to build a model that combines a Minimum Spanning Tree and a Support Vector Machine (SVM). We have performed an extensive number of experiments through which we have addressed (a) the search for efficient visual descriptors, (b) the analysis of the extent to which our heuristic metric resembles the human criteria for relevance and, finally, (c) the experimental validation of our complete proposal. In the experiments, we have used both a public image database and images collected at our research center.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>31540453</pmid><doi>10.3390/s19184024</doi><orcidid>https://orcid.org/0000-0001-9388-7461</orcidid><orcidid>https://orcid.org/0000-0002-3997-5150</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2019-09, Vol.19 (18), p.4024 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8020ab5599d845aeb69c9a6ceafd4f59 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | Architecture Computer vision Global positioning systems GPS Graph theory image collection summarization Image databases International conferences Localization meaningful images Pattern recognition Power Research facilities Robotics Robots scene recognition Sensors Support vector machines |
title | Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20and%20Fast%20Scene%20Recognition%20in%20Robotics%20Through%20the%20Automatic%20Identification%20of%20Meaningful%20Images&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Santos,%20David&rft.date=2019-09-18&rft.volume=19&rft.issue=18&rft.spage=4024&rft.pages=4024-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19184024&rft_dat=%3Cproquest_doaj_%3E2295484820%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301923195&rft_id=info:pmid/31540453&rfr_iscdi=true |