Loading…

Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images

Scene recognition is still a very important topic in many fields, and that is definitely the case in robotics. Nevertheless, this task is view-dependent, which implies the existence of preferable directions when recognizing a particular scene. Both in human and computer vision-based classification,...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-09, Vol.19 (18), p.4024
Main Authors: Santos, David, Lopez-Lopez, Eric, Pardo, Xosé M., Iglesias, Roberto, Barro, Senén, Fdez-Vidal, Xosé R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3
cites cdi_FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3
container_end_page
container_issue 18
container_start_page 4024
container_title Sensors (Basel, Switzerland)
container_volume 19
creator Santos, David
Lopez-Lopez, Eric
Pardo, Xosé M.
Iglesias, Roberto
Barro, Senén
Fdez-Vidal, Xosé R.
description Scene recognition is still a very important topic in many fields, and that is definitely the case in robotics. Nevertheless, this task is view-dependent, which implies the existence of preferable directions when recognizing a particular scene. Both in human and computer vision-based classification, this actually often turns out to be biased. In our case, instead of trying to improve the generalization capability for different view directions, we have opted for the development of a system capable of filtering out noisy or meaningless images while, on the contrary, retaining those views from which is likely feasible that the correct identification of the scene can be made. Our proposal works with a heuristic metric based on the detection of key points in 3D meshes (Harris 3D). This metric is later used to build a model that combines a Minimum Spanning Tree and a Support Vector Machine (SVM). We have performed an extensive number of experiments through which we have addressed (a) the search for efficient visual descriptors, (b) the analysis of the extent to which our heuristic metric resembles the human criteria for relevance and, finally, (c) the experimental validation of our complete proposal. In the experiments, we have used both a public image database and images collected at our research center.
doi_str_mv 10.3390/s19184024
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8020ab5599d845aeb69c9a6ceafd4f59</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8020ab5599d845aeb69c9a6ceafd4f59</doaj_id><sourcerecordid>2295484820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3</originalsourceid><addsrcrecordid>eNp9ks1rFTEQwBdR7Ice_A8CXvTwNN-bXIRSrH1QEWo9h9nsZF8eu0nd7Bb87419pVgPnmaY_ObHZJimecPoByEs_ViYZUZSLp81x0xyuTGc0-d_5UfNSSl7SrkQwrxsjgRTkkoljpvhOndrWQiknlxATb57TEiu0echxSXmRGIiFcpL9IXc7Oa8Djuy7JCcrUueoJbJtse0xBA93DfkQL4ipJiGsI5kO8GA5VXzIsBY8PVDPG1-XHy-Ob_cXH37sj0_u9p42cplo7vOeM2EQNlREAq91hStr9_0rQ7ANTLa9xxbrkCrEJTnyrRBBa-xhSBOm-3B22fYu9s5TjD_chmiuy_keXAw15lHdIZyCp1S1vZGKsBOW29Be4TQy6BsdX06uG7XbsK-LmaZYXwiffqS4s4N-c7pVre8FVXw7kEw558rlsVNsXgcR0iY1-I4t0oaaTit6Nt_0H1e51RX5bgSlTKa6_9SgjLLBbOqUu8PlJ9zKTOGx5EZdX8Oxj0ejPgNGfCxVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301923195</pqid></control><display><type>article</type><title>Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Santos, David ; Lopez-Lopez, Eric ; Pardo, Xosé M. ; Iglesias, Roberto ; Barro, Senén ; Fdez-Vidal, Xosé R.</creator><creatorcontrib>Santos, David ; Lopez-Lopez, Eric ; Pardo, Xosé M. ; Iglesias, Roberto ; Barro, Senén ; Fdez-Vidal, Xosé R.</creatorcontrib><description>Scene recognition is still a very important topic in many fields, and that is definitely the case in robotics. Nevertheless, this task is view-dependent, which implies the existence of preferable directions when recognizing a particular scene. Both in human and computer vision-based classification, this actually often turns out to be biased. In our case, instead of trying to improve the generalization capability for different view directions, we have opted for the development of a system capable of filtering out noisy or meaningless images while, on the contrary, retaining those views from which is likely feasible that the correct identification of the scene can be made. Our proposal works with a heuristic metric based on the detection of key points in 3D meshes (Harris 3D). This metric is later used to build a model that combines a Minimum Spanning Tree and a Support Vector Machine (SVM). We have performed an extensive number of experiments through which we have addressed (a) the search for efficient visual descriptors, (b) the analysis of the extent to which our heuristic metric resembles the human criteria for relevance and, finally, (c) the experimental validation of our complete proposal. In the experiments, we have used both a public image database and images collected at our research center.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19184024</identifier><identifier>PMID: 31540453</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Architecture ; Computer vision ; Global positioning systems ; GPS ; Graph theory ; image collection summarization ; Image databases ; International conferences ; Localization ; meaningful images ; Pattern recognition ; Power ; Research facilities ; Robotics ; Robots ; scene recognition ; Sensors ; Support vector machines</subject><ispartof>Sensors (Basel, Switzerland), 2019-09, Vol.19 (18), p.4024</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3</citedby><cites>FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3</cites><orcidid>0000-0001-9388-7461 ; 0000-0002-3997-5150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535488626/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535488626?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Santos, David</creatorcontrib><creatorcontrib>Lopez-Lopez, Eric</creatorcontrib><creatorcontrib>Pardo, Xosé M.</creatorcontrib><creatorcontrib>Iglesias, Roberto</creatorcontrib><creatorcontrib>Barro, Senén</creatorcontrib><creatorcontrib>Fdez-Vidal, Xosé R.</creatorcontrib><title>Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images</title><title>Sensors (Basel, Switzerland)</title><description>Scene recognition is still a very important topic in many fields, and that is definitely the case in robotics. Nevertheless, this task is view-dependent, which implies the existence of preferable directions when recognizing a particular scene. Both in human and computer vision-based classification, this actually often turns out to be biased. In our case, instead of trying to improve the generalization capability for different view directions, we have opted for the development of a system capable of filtering out noisy or meaningless images while, on the contrary, retaining those views from which is likely feasible that the correct identification of the scene can be made. Our proposal works with a heuristic metric based on the detection of key points in 3D meshes (Harris 3D). This metric is later used to build a model that combines a Minimum Spanning Tree and a Support Vector Machine (SVM). We have performed an extensive number of experiments through which we have addressed (a) the search for efficient visual descriptors, (b) the analysis of the extent to which our heuristic metric resembles the human criteria for relevance and, finally, (c) the experimental validation of our complete proposal. In the experiments, we have used both a public image database and images collected at our research center.</description><subject>Architecture</subject><subject>Computer vision</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Graph theory</subject><subject>image collection summarization</subject><subject>Image databases</subject><subject>International conferences</subject><subject>Localization</subject><subject>meaningful images</subject><subject>Pattern recognition</subject><subject>Power</subject><subject>Research facilities</subject><subject>Robotics</subject><subject>Robots</subject><subject>scene recognition</subject><subject>Sensors</subject><subject>Support vector machines</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1rFTEQwBdR7Ice_A8CXvTwNN-bXIRSrH1QEWo9h9nsZF8eu0nd7Bb87419pVgPnmaY_ObHZJimecPoByEs_ViYZUZSLp81x0xyuTGc0-d_5UfNSSl7SrkQwrxsjgRTkkoljpvhOndrWQiknlxATb57TEiu0echxSXmRGIiFcpL9IXc7Oa8Djuy7JCcrUueoJbJtse0xBA93DfkQL4ipJiGsI5kO8GA5VXzIsBY8PVDPG1-XHy-Ob_cXH37sj0_u9p42cplo7vOeM2EQNlREAq91hStr9_0rQ7ANTLa9xxbrkCrEJTnyrRBBa-xhSBOm-3B22fYu9s5TjD_chmiuy_keXAw15lHdIZyCp1S1vZGKsBOW29Be4TQy6BsdX06uG7XbsK-LmaZYXwiffqS4s4N-c7pVre8FVXw7kEw558rlsVNsXgcR0iY1-I4t0oaaTit6Nt_0H1e51RX5bgSlTKa6_9SgjLLBbOqUu8PlJ9zKTOGx5EZdX8Oxj0ejPgNGfCxVA</recordid><startdate>20190918</startdate><enddate>20190918</enddate><creator>Santos, David</creator><creator>Lopez-Lopez, Eric</creator><creator>Pardo, Xosé M.</creator><creator>Iglesias, Roberto</creator><creator>Barro, Senén</creator><creator>Fdez-Vidal, Xosé R.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9388-7461</orcidid><orcidid>https://orcid.org/0000-0002-3997-5150</orcidid></search><sort><creationdate>20190918</creationdate><title>Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images</title><author>Santos, David ; Lopez-Lopez, Eric ; Pardo, Xosé M. ; Iglesias, Roberto ; Barro, Senén ; Fdez-Vidal, Xosé R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Computer vision</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Graph theory</topic><topic>image collection summarization</topic><topic>Image databases</topic><topic>International conferences</topic><topic>Localization</topic><topic>meaningful images</topic><topic>Pattern recognition</topic><topic>Power</topic><topic>Research facilities</topic><topic>Robotics</topic><topic>Robots</topic><topic>scene recognition</topic><topic>Sensors</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, David</creatorcontrib><creatorcontrib>Lopez-Lopez, Eric</creatorcontrib><creatorcontrib>Pardo, Xosé M.</creatorcontrib><creatorcontrib>Iglesias, Roberto</creatorcontrib><creatorcontrib>Barro, Senén</creatorcontrib><creatorcontrib>Fdez-Vidal, Xosé R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Health &amp; Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, David</au><au>Lopez-Lopez, Eric</au><au>Pardo, Xosé M.</au><au>Iglesias, Roberto</au><au>Barro, Senén</au><au>Fdez-Vidal, Xosé R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2019-09-18</date><risdate>2019</risdate><volume>19</volume><issue>18</issue><spage>4024</spage><pages>4024-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Scene recognition is still a very important topic in many fields, and that is definitely the case in robotics. Nevertheless, this task is view-dependent, which implies the existence of preferable directions when recognizing a particular scene. Both in human and computer vision-based classification, this actually often turns out to be biased. In our case, instead of trying to improve the generalization capability for different view directions, we have opted for the development of a system capable of filtering out noisy or meaningless images while, on the contrary, retaining those views from which is likely feasible that the correct identification of the scene can be made. Our proposal works with a heuristic metric based on the detection of key points in 3D meshes (Harris 3D). This metric is later used to build a model that combines a Minimum Spanning Tree and a Support Vector Machine (SVM). We have performed an extensive number of experiments through which we have addressed (a) the search for efficient visual descriptors, (b) the analysis of the extent to which our heuristic metric resembles the human criteria for relevance and, finally, (c) the experimental validation of our complete proposal. In the experiments, we have used both a public image database and images collected at our research center.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>31540453</pmid><doi>10.3390/s19184024</doi><orcidid>https://orcid.org/0000-0001-9388-7461</orcidid><orcidid>https://orcid.org/0000-0002-3997-5150</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2019-09, Vol.19 (18), p.4024
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8020ab5599d845aeb69c9a6ceafd4f59
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Architecture
Computer vision
Global positioning systems
GPS
Graph theory
image collection summarization
Image databases
International conferences
Localization
meaningful images
Pattern recognition
Power
Research facilities
Robotics
Robots
scene recognition
Sensors
Support vector machines
title Robust and Fast Scene Recognition in Robotics Through the Automatic Identification of Meaningful Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20and%20Fast%20Scene%20Recognition%20in%20Robotics%20Through%20the%20Automatic%20Identification%20of%20Meaningful%20Images&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Santos,%20David&rft.date=2019-09-18&rft.volume=19&rft.issue=18&rft.spage=4024&rft.pages=4024-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19184024&rft_dat=%3Cproquest_doaj_%3E2295484820%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-6bb8c6133e4b0a35ec660e9c339c76fa26e10dd2e725a65ff5c2587f5fc6e7af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301923195&rft_id=info:pmid/31540453&rfr_iscdi=true