Loading…
Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period
After the oil field enters the high water content period, the oil–water mixed fluid in the mixing system will gradually change into the water-in-oil mixed fluid, while the dissolved CO2 causes the pH value of the mixed fluid to decrease. There is also a certain amount of bacteria in the output fluid...
Saved in:
Published in: | Atmosphere 2022-10, Vol.13 (10), p.1687 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053 |
container_end_page | |
container_issue | 10 |
container_start_page | 1687 |
container_title | Atmosphere |
container_volume | 13 |
creator | Yang, Zhonghua Shi, Lihong Zou, Minghua Wang, Changquan |
description | After the oil field enters the high water content period, the oil–water mixed fluid in the mixing system will gradually change into the water-in-oil mixed fluid, while the dissolved CO2 causes the pH value of the mixed fluid to decrease. There is also a certain amount of bacteria in the output fluid, with many factors leading to the intensification in the corrosion of the oil–water mixed system pipeline in the high water content period. To clarify its corrosion law, through the mixed transmission pipeline material, 20# carbon steel, in high water conditions under the action of different single factor dynamic corrosion rate experiments, along with the use of the SPSS method, were used to determine the corrosion of the main control factors. The results show that in the high water content period, the corrosion rate of the mixed pipeline 20# steel gradually increases with the increase in temperature pressure, CO2 partial pressure, SRB content, Ca2+ + Mg2+ content, and Cl− content. The corrosion rate with the CO2 partial pressure and SRB content changes show a strong multiplicative power relationship; with Ca2+ + Mg2+ content, Cl− content changes show a logarithmic relationship, the relationship degree R2 is above 0.98. Through SPSS data analysis software combined with experimental data for correlation degree analysis, it is concluded that the correlation magnitude relationship between each factor and corrosion rate is CO2 partial pressure > SRB content > Cl− content > Ca2+ + Mg2+ content > temperature pressure, which provides a theoretical basis for the corrosion protection of an oil gathering pipeline. |
doi_str_mv | 10.3390/atmos13101687 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_802124d1c63c4aac93fe25fc5c4a4975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_802124d1c63c4aac93fe25fc5c4a4975</doaj_id><sourcerecordid>2728431290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053</originalsourceid><addsrcrecordid>eNpVUU1LAzEQXURBUY_eA55Xk0zS3Rxl8aOg1IPiMaTZpKZsk5qkoDf_g__QX2LqiuhcZt7weDPzpqpOCD4DEPhc5VVIBAgmk7bZqQ4obqBmDGD3T71fHae0xCWYAArsoHq7UjqHmNDU22FjvHZ-gfKzQd2Moi7EGJILHt2rnE30KFg0c8Pn-8eTKhjduVfTo4eofFq5NDLd2gzOG9Rv4lbrxi2e0cjugs_GZ3Rvogv9UbVn1ZDM8U8-rB6vLh-6m_p2dj3tLm5rDRjnmnNBy1HlLAaWzntBQc9pA6yhumk5we287xXTLcHFhkZwNlEMK8GtspxiDofVdNTtg1rKdXQrFd9kUE5-N0JcSBWz04ORLaaEsp7oCWimlBZgDeVW84KYaLZap6PWOoaXjUlZLsMm-rK-pA1tGRAqcGHVI0sX91I09ncqwXL7LPnvWfAFfceHcA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728431290</pqid></control><display><type>article</type><title>Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Yang, Zhonghua ; Shi, Lihong ; Zou, Minghua ; Wang, Changquan</creator><creatorcontrib>Yang, Zhonghua ; Shi, Lihong ; Zou, Minghua ; Wang, Changquan</creatorcontrib><description>After the oil field enters the high water content period, the oil–water mixed fluid in the mixing system will gradually change into the water-in-oil mixed fluid, while the dissolved CO2 causes the pH value of the mixed fluid to decrease. There is also a certain amount of bacteria in the output fluid, with many factors leading to the intensification in the corrosion of the oil–water mixed system pipeline in the high water content period. To clarify its corrosion law, through the mixed transmission pipeline material, 20# carbon steel, in high water conditions under the action of different single factor dynamic corrosion rate experiments, along with the use of the SPSS method, were used to determine the corrosion of the main control factors. The results show that in the high water content period, the corrosion rate of the mixed pipeline 20# steel gradually increases with the increase in temperature pressure, CO2 partial pressure, SRB content, Ca2+ + Mg2+ content, and Cl− content. The corrosion rate with the CO2 partial pressure and SRB content changes show a strong multiplicative power relationship; with Ca2+ + Mg2+ content, Cl− content changes show a logarithmic relationship, the relationship degree R2 is above 0.98. Through SPSS data analysis software combined with experimental data for correlation degree analysis, it is concluded that the correlation magnitude relationship between each factor and corrosion rate is CO2 partial pressure > SRB content > Cl− content > Ca2+ + Mg2+ content > temperature pressure, which provides a theoretical basis for the corrosion protection of an oil gathering pipeline.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos13101687</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bacteria ; Calcium ; Calcium ions ; Carbon dioxide ; Carbon steel ; Carbon steels ; CO2 partial pressure ; Correlation ; Correlation analysis ; Corrosion ; corrosion law ; Corrosion prevention ; Corrosion rate ; Corrosion tests ; Data analysis ; Ethanol ; Experiments ; high water content ; Laboratories ; Magnesium ; Mineralization ; Moisture content ; Oil ; Oil and gas fields ; Oil fields ; oil–water mixed transmission system ; Partial pressure ; Pipelines ; Pressure ; Temperature ; Water ; Water content ; Working conditions</subject><ispartof>Atmosphere, 2022-10, Vol.13 (10), p.1687</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053</citedby><cites>FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053</cites><orcidid>0000-0001-8079-2201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728431290/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728431290?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Yang, Zhonghua</creatorcontrib><creatorcontrib>Shi, Lihong</creatorcontrib><creatorcontrib>Zou, Minghua</creatorcontrib><creatorcontrib>Wang, Changquan</creatorcontrib><title>Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period</title><title>Atmosphere</title><description>After the oil field enters the high water content period, the oil–water mixed fluid in the mixing system will gradually change into the water-in-oil mixed fluid, while the dissolved CO2 causes the pH value of the mixed fluid to decrease. There is also a certain amount of bacteria in the output fluid, with many factors leading to the intensification in the corrosion of the oil–water mixed system pipeline in the high water content period. To clarify its corrosion law, through the mixed transmission pipeline material, 20# carbon steel, in high water conditions under the action of different single factor dynamic corrosion rate experiments, along with the use of the SPSS method, were used to determine the corrosion of the main control factors. The results show that in the high water content period, the corrosion rate of the mixed pipeline 20# steel gradually increases with the increase in temperature pressure, CO2 partial pressure, SRB content, Ca2+ + Mg2+ content, and Cl− content. The corrosion rate with the CO2 partial pressure and SRB content changes show a strong multiplicative power relationship; with Ca2+ + Mg2+ content, Cl− content changes show a logarithmic relationship, the relationship degree R2 is above 0.98. Through SPSS data analysis software combined with experimental data for correlation degree analysis, it is concluded that the correlation magnitude relationship between each factor and corrosion rate is CO2 partial pressure > SRB content > Cl− content > Ca2+ + Mg2+ content > temperature pressure, which provides a theoretical basis for the corrosion protection of an oil gathering pipeline.</description><subject>Bacteria</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Carbon dioxide</subject><subject>Carbon steel</subject><subject>Carbon steels</subject><subject>CO2 partial pressure</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Corrosion</subject><subject>corrosion law</subject><subject>Corrosion prevention</subject><subject>Corrosion rate</subject><subject>Corrosion tests</subject><subject>Data analysis</subject><subject>Ethanol</subject><subject>Experiments</subject><subject>high water content</subject><subject>Laboratories</subject><subject>Magnesium</subject><subject>Mineralization</subject><subject>Moisture content</subject><subject>Oil</subject><subject>Oil and gas fields</subject><subject>Oil fields</subject><subject>oil–water mixed transmission system</subject><subject>Partial pressure</subject><subject>Pipelines</subject><subject>Pressure</subject><subject>Temperature</subject><subject>Water</subject><subject>Water content</subject><subject>Working conditions</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1LAzEQXURBUY_eA55Xk0zS3Rxl8aOg1IPiMaTZpKZsk5qkoDf_g__QX2LqiuhcZt7weDPzpqpOCD4DEPhc5VVIBAgmk7bZqQ4obqBmDGD3T71fHae0xCWYAArsoHq7UjqHmNDU22FjvHZ-gfKzQd2Moi7EGJILHt2rnE30KFg0c8Pn-8eTKhjduVfTo4eofFq5NDLd2gzOG9Rv4lbrxi2e0cjugs_GZ3Rvogv9UbVn1ZDM8U8-rB6vLh-6m_p2dj3tLm5rDRjnmnNBy1HlLAaWzntBQc9pA6yhumk5we287xXTLcHFhkZwNlEMK8GtspxiDofVdNTtg1rKdXQrFd9kUE5-N0JcSBWz04ORLaaEsp7oCWimlBZgDeVW84KYaLZap6PWOoaXjUlZLsMm-rK-pA1tGRAqcGHVI0sX91I09ncqwXL7LPnvWfAFfceHcA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Yang, Zhonghua</creator><creator>Shi, Lihong</creator><creator>Zou, Minghua</creator><creator>Wang, Changquan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8079-2201</orcidid></search><sort><creationdate>20221001</creationdate><title>Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period</title><author>Yang, Zhonghua ; Shi, Lihong ; Zou, Minghua ; Wang, Changquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacteria</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Carbon dioxide</topic><topic>Carbon steel</topic><topic>Carbon steels</topic><topic>CO2 partial pressure</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Corrosion</topic><topic>corrosion law</topic><topic>Corrosion prevention</topic><topic>Corrosion rate</topic><topic>Corrosion tests</topic><topic>Data analysis</topic><topic>Ethanol</topic><topic>Experiments</topic><topic>high water content</topic><topic>Laboratories</topic><topic>Magnesium</topic><topic>Mineralization</topic><topic>Moisture content</topic><topic>Oil</topic><topic>Oil and gas fields</topic><topic>Oil fields</topic><topic>oil–water mixed transmission system</topic><topic>Partial pressure</topic><topic>Pipelines</topic><topic>Pressure</topic><topic>Temperature</topic><topic>Water</topic><topic>Water content</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhonghua</creatorcontrib><creatorcontrib>Shi, Lihong</creatorcontrib><creatorcontrib>Zou, Minghua</creatorcontrib><creatorcontrib>Wang, Changquan</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhonghua</au><au>Shi, Lihong</au><au>Zou, Minghua</au><au>Wang, Changquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period</atitle><jtitle>Atmosphere</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>13</volume><issue>10</issue><spage>1687</spage><pages>1687-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>After the oil field enters the high water content period, the oil–water mixed fluid in the mixing system will gradually change into the water-in-oil mixed fluid, while the dissolved CO2 causes the pH value of the mixed fluid to decrease. There is also a certain amount of bacteria in the output fluid, with many factors leading to the intensification in the corrosion of the oil–water mixed system pipeline in the high water content period. To clarify its corrosion law, through the mixed transmission pipeline material, 20# carbon steel, in high water conditions under the action of different single factor dynamic corrosion rate experiments, along with the use of the SPSS method, were used to determine the corrosion of the main control factors. The results show that in the high water content period, the corrosion rate of the mixed pipeline 20# steel gradually increases with the increase in temperature pressure, CO2 partial pressure, SRB content, Ca2+ + Mg2+ content, and Cl− content. The corrosion rate with the CO2 partial pressure and SRB content changes show a strong multiplicative power relationship; with Ca2+ + Mg2+ content, Cl− content changes show a logarithmic relationship, the relationship degree R2 is above 0.98. Through SPSS data analysis software combined with experimental data for correlation degree analysis, it is concluded that the correlation magnitude relationship between each factor and corrosion rate is CO2 partial pressure > SRB content > Cl− content > Ca2+ + Mg2+ content > temperature pressure, which provides a theoretical basis for the corrosion protection of an oil gathering pipeline.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos13101687</doi><orcidid>https://orcid.org/0000-0001-8079-2201</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4433 |
ispartof | Atmosphere, 2022-10, Vol.13 (10), p.1687 |
issn | 2073-4433 2073-4433 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_802124d1c63c4aac93fe25fc5c4a4975 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Bacteria Calcium Calcium ions Carbon dioxide Carbon steel Carbon steels CO2 partial pressure Correlation Correlation analysis Corrosion corrosion law Corrosion prevention Corrosion rate Corrosion tests Data analysis Ethanol Experiments high water content Laboratories Magnesium Mineralization Moisture content Oil Oil and gas fields Oil fields oil–water mixed transmission system Partial pressure Pipelines Pressure Temperature Water Water content Working conditions |
title | Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factors%20Influencing%20the%20CO2%20Corrosion%20Pattern%20of%20Oil%E2%80%93Water%20Mixed%20Transmission%20Pipeline%20during%20High%20Water%20Content%20Period&rft.jtitle=Atmosphere&rft.au=Yang,%20Zhonghua&rft.date=2022-10-01&rft.volume=13&rft.issue=10&rft.spage=1687&rft.pages=1687-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos13101687&rft_dat=%3Cproquest_doaj_%3E2728431290%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728431290&rft_id=info:pmid/&rfr_iscdi=true |