Loading…

Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period

After the oil field enters the high water content period, the oil–water mixed fluid in the mixing system will gradually change into the water-in-oil mixed fluid, while the dissolved CO2 causes the pH value of the mixed fluid to decrease. There is also a certain amount of bacteria in the output fluid...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2022-10, Vol.13 (10), p.1687
Main Authors: Yang, Zhonghua, Shi, Lihong, Zou, Minghua, Wang, Changquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053
cites cdi_FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053
container_end_page
container_issue 10
container_start_page 1687
container_title Atmosphere
container_volume 13
creator Yang, Zhonghua
Shi, Lihong
Zou, Minghua
Wang, Changquan
description After the oil field enters the high water content period, the oil–water mixed fluid in the mixing system will gradually change into the water-in-oil mixed fluid, while the dissolved CO2 causes the pH value of the mixed fluid to decrease. There is also a certain amount of bacteria in the output fluid, with many factors leading to the intensification in the corrosion of the oil–water mixed system pipeline in the high water content period. To clarify its corrosion law, through the mixed transmission pipeline material, 20# carbon steel, in high water conditions under the action of different single factor dynamic corrosion rate experiments, along with the use of the SPSS method, were used to determine the corrosion of the main control factors. The results show that in the high water content period, the corrosion rate of the mixed pipeline 20# steel gradually increases with the increase in temperature pressure, CO2 partial pressure, SRB content, Ca2+ + Mg2+ content, and Cl− content. The corrosion rate with the CO2 partial pressure and SRB content changes show a strong multiplicative power relationship; with Ca2+ + Mg2+ content, Cl− content changes show a logarithmic relationship, the relationship degree R2 is above 0.98. Through SPSS data analysis software combined with experimental data for correlation degree analysis, it is concluded that the correlation magnitude relationship between each factor and corrosion rate is CO2 partial pressure > SRB content > Cl− content > Ca2+ + Mg2+ content > temperature pressure, which provides a theoretical basis for the corrosion protection of an oil gathering pipeline.
doi_str_mv 10.3390/atmos13101687
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_802124d1c63c4aac93fe25fc5c4a4975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_802124d1c63c4aac93fe25fc5c4a4975</doaj_id><sourcerecordid>2728431290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053</originalsourceid><addsrcrecordid>eNpVUU1LAzEQXURBUY_eA55Xk0zS3Rxl8aOg1IPiMaTZpKZsk5qkoDf_g__QX2LqiuhcZt7weDPzpqpOCD4DEPhc5VVIBAgmk7bZqQ4obqBmDGD3T71fHae0xCWYAArsoHq7UjqHmNDU22FjvHZ-gfKzQd2Moi7EGJILHt2rnE30KFg0c8Pn-8eTKhjduVfTo4eofFq5NDLd2gzOG9Rv4lbrxi2e0cjugs_GZ3Rvogv9UbVn1ZDM8U8-rB6vLh-6m_p2dj3tLm5rDRjnmnNBy1HlLAaWzntBQc9pA6yhumk5we287xXTLcHFhkZwNlEMK8GtspxiDofVdNTtg1rKdXQrFd9kUE5-N0JcSBWz04ORLaaEsp7oCWimlBZgDeVW84KYaLZap6PWOoaXjUlZLsMm-rK-pA1tGRAqcGHVI0sX91I09ncqwXL7LPnvWfAFfceHcA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728431290</pqid></control><display><type>article</type><title>Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Yang, Zhonghua ; Shi, Lihong ; Zou, Minghua ; Wang, Changquan</creator><creatorcontrib>Yang, Zhonghua ; Shi, Lihong ; Zou, Minghua ; Wang, Changquan</creatorcontrib><description>After the oil field enters the high water content period, the oil–water mixed fluid in the mixing system will gradually change into the water-in-oil mixed fluid, while the dissolved CO2 causes the pH value of the mixed fluid to decrease. There is also a certain amount of bacteria in the output fluid, with many factors leading to the intensification in the corrosion of the oil–water mixed system pipeline in the high water content period. To clarify its corrosion law, through the mixed transmission pipeline material, 20# carbon steel, in high water conditions under the action of different single factor dynamic corrosion rate experiments, along with the use of the SPSS method, were used to determine the corrosion of the main control factors. The results show that in the high water content period, the corrosion rate of the mixed pipeline 20# steel gradually increases with the increase in temperature pressure, CO2 partial pressure, SRB content, Ca2+ + Mg2+ content, and Cl− content. The corrosion rate with the CO2 partial pressure and SRB content changes show a strong multiplicative power relationship; with Ca2+ + Mg2+ content, Cl− content changes show a logarithmic relationship, the relationship degree R2 is above 0.98. Through SPSS data analysis software combined with experimental data for correlation degree analysis, it is concluded that the correlation magnitude relationship between each factor and corrosion rate is CO2 partial pressure &gt; SRB content &gt; Cl− content &gt; Ca2+ + Mg2+ content &gt; temperature pressure, which provides a theoretical basis for the corrosion protection of an oil gathering pipeline.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos13101687</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bacteria ; Calcium ; Calcium ions ; Carbon dioxide ; Carbon steel ; Carbon steels ; CO2 partial pressure ; Correlation ; Correlation analysis ; Corrosion ; corrosion law ; Corrosion prevention ; Corrosion rate ; Corrosion tests ; Data analysis ; Ethanol ; Experiments ; high water content ; Laboratories ; Magnesium ; Mineralization ; Moisture content ; Oil ; Oil and gas fields ; Oil fields ; oil–water mixed transmission system ; Partial pressure ; Pipelines ; Pressure ; Temperature ; Water ; Water content ; Working conditions</subject><ispartof>Atmosphere, 2022-10, Vol.13 (10), p.1687</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053</citedby><cites>FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053</cites><orcidid>0000-0001-8079-2201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728431290/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728431290?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Yang, Zhonghua</creatorcontrib><creatorcontrib>Shi, Lihong</creatorcontrib><creatorcontrib>Zou, Minghua</creatorcontrib><creatorcontrib>Wang, Changquan</creatorcontrib><title>Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period</title><title>Atmosphere</title><description>After the oil field enters the high water content period, the oil–water mixed fluid in the mixing system will gradually change into the water-in-oil mixed fluid, while the dissolved CO2 causes the pH value of the mixed fluid to decrease. There is also a certain amount of bacteria in the output fluid, with many factors leading to the intensification in the corrosion of the oil–water mixed system pipeline in the high water content period. To clarify its corrosion law, through the mixed transmission pipeline material, 20# carbon steel, in high water conditions under the action of different single factor dynamic corrosion rate experiments, along with the use of the SPSS method, were used to determine the corrosion of the main control factors. The results show that in the high water content period, the corrosion rate of the mixed pipeline 20# steel gradually increases with the increase in temperature pressure, CO2 partial pressure, SRB content, Ca2+ + Mg2+ content, and Cl− content. The corrosion rate with the CO2 partial pressure and SRB content changes show a strong multiplicative power relationship; with Ca2+ + Mg2+ content, Cl− content changes show a logarithmic relationship, the relationship degree R2 is above 0.98. Through SPSS data analysis software combined with experimental data for correlation degree analysis, it is concluded that the correlation magnitude relationship between each factor and corrosion rate is CO2 partial pressure &gt; SRB content &gt; Cl− content &gt; Ca2+ + Mg2+ content &gt; temperature pressure, which provides a theoretical basis for the corrosion protection of an oil gathering pipeline.</description><subject>Bacteria</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Carbon dioxide</subject><subject>Carbon steel</subject><subject>Carbon steels</subject><subject>CO2 partial pressure</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Corrosion</subject><subject>corrosion law</subject><subject>Corrosion prevention</subject><subject>Corrosion rate</subject><subject>Corrosion tests</subject><subject>Data analysis</subject><subject>Ethanol</subject><subject>Experiments</subject><subject>high water content</subject><subject>Laboratories</subject><subject>Magnesium</subject><subject>Mineralization</subject><subject>Moisture content</subject><subject>Oil</subject><subject>Oil and gas fields</subject><subject>Oil fields</subject><subject>oil–water mixed transmission system</subject><subject>Partial pressure</subject><subject>Pipelines</subject><subject>Pressure</subject><subject>Temperature</subject><subject>Water</subject><subject>Water content</subject><subject>Working conditions</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1LAzEQXURBUY_eA55Xk0zS3Rxl8aOg1IPiMaTZpKZsk5qkoDf_g__QX2LqiuhcZt7weDPzpqpOCD4DEPhc5VVIBAgmk7bZqQ4obqBmDGD3T71fHae0xCWYAArsoHq7UjqHmNDU22FjvHZ-gfKzQd2Moi7EGJILHt2rnE30KFg0c8Pn-8eTKhjduVfTo4eofFq5NDLd2gzOG9Rv4lbrxi2e0cjugs_GZ3Rvogv9UbVn1ZDM8U8-rB6vLh-6m_p2dj3tLm5rDRjnmnNBy1HlLAaWzntBQc9pA6yhumk5we287xXTLcHFhkZwNlEMK8GtspxiDofVdNTtg1rKdXQrFd9kUE5-N0JcSBWz04ORLaaEsp7oCWimlBZgDeVW84KYaLZap6PWOoaXjUlZLsMm-rK-pA1tGRAqcGHVI0sX91I09ncqwXL7LPnvWfAFfceHcA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Yang, Zhonghua</creator><creator>Shi, Lihong</creator><creator>Zou, Minghua</creator><creator>Wang, Changquan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8079-2201</orcidid></search><sort><creationdate>20221001</creationdate><title>Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period</title><author>Yang, Zhonghua ; Shi, Lihong ; Zou, Minghua ; Wang, Changquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacteria</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Carbon dioxide</topic><topic>Carbon steel</topic><topic>Carbon steels</topic><topic>CO2 partial pressure</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Corrosion</topic><topic>corrosion law</topic><topic>Corrosion prevention</topic><topic>Corrosion rate</topic><topic>Corrosion tests</topic><topic>Data analysis</topic><topic>Ethanol</topic><topic>Experiments</topic><topic>high water content</topic><topic>Laboratories</topic><topic>Magnesium</topic><topic>Mineralization</topic><topic>Moisture content</topic><topic>Oil</topic><topic>Oil and gas fields</topic><topic>Oil fields</topic><topic>oil–water mixed transmission system</topic><topic>Partial pressure</topic><topic>Pipelines</topic><topic>Pressure</topic><topic>Temperature</topic><topic>Water</topic><topic>Water content</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhonghua</creatorcontrib><creatorcontrib>Shi, Lihong</creatorcontrib><creatorcontrib>Zou, Minghua</creatorcontrib><creatorcontrib>Wang, Changquan</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhonghua</au><au>Shi, Lihong</au><au>Zou, Minghua</au><au>Wang, Changquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period</atitle><jtitle>Atmosphere</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>13</volume><issue>10</issue><spage>1687</spage><pages>1687-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>After the oil field enters the high water content period, the oil–water mixed fluid in the mixing system will gradually change into the water-in-oil mixed fluid, while the dissolved CO2 causes the pH value of the mixed fluid to decrease. There is also a certain amount of bacteria in the output fluid, with many factors leading to the intensification in the corrosion of the oil–water mixed system pipeline in the high water content period. To clarify its corrosion law, through the mixed transmission pipeline material, 20# carbon steel, in high water conditions under the action of different single factor dynamic corrosion rate experiments, along with the use of the SPSS method, were used to determine the corrosion of the main control factors. The results show that in the high water content period, the corrosion rate of the mixed pipeline 20# steel gradually increases with the increase in temperature pressure, CO2 partial pressure, SRB content, Ca2+ + Mg2+ content, and Cl− content. The corrosion rate with the CO2 partial pressure and SRB content changes show a strong multiplicative power relationship; with Ca2+ + Mg2+ content, Cl− content changes show a logarithmic relationship, the relationship degree R2 is above 0.98. Through SPSS data analysis software combined with experimental data for correlation degree analysis, it is concluded that the correlation magnitude relationship between each factor and corrosion rate is CO2 partial pressure &gt; SRB content &gt; Cl− content &gt; Ca2+ + Mg2+ content &gt; temperature pressure, which provides a theoretical basis for the corrosion protection of an oil gathering pipeline.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos13101687</doi><orcidid>https://orcid.org/0000-0001-8079-2201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4433
ispartof Atmosphere, 2022-10, Vol.13 (10), p.1687
issn 2073-4433
2073-4433
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_802124d1c63c4aac93fe25fc5c4a4975
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Bacteria
Calcium
Calcium ions
Carbon dioxide
Carbon steel
Carbon steels
CO2 partial pressure
Correlation
Correlation analysis
Corrosion
corrosion law
Corrosion prevention
Corrosion rate
Corrosion tests
Data analysis
Ethanol
Experiments
high water content
Laboratories
Magnesium
Mineralization
Moisture content
Oil
Oil and gas fields
Oil fields
oil–water mixed transmission system
Partial pressure
Pipelines
Pressure
Temperature
Water
Water content
Working conditions
title Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factors%20Influencing%20the%20CO2%20Corrosion%20Pattern%20of%20Oil%E2%80%93Water%20Mixed%20Transmission%20Pipeline%20during%20High%20Water%20Content%20Period&rft.jtitle=Atmosphere&rft.au=Yang,%20Zhonghua&rft.date=2022-10-01&rft.volume=13&rft.issue=10&rft.spage=1687&rft.pages=1687-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos13101687&rft_dat=%3Cproquest_doaj_%3E2728431290%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-559210101643f2bd923cb273472c785108bdda4c81039079546a40a95faf52053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728431290&rft_id=info:pmid/&rfr_iscdi=true