Loading…
Localizing Brain Activity from Multiple Distinct Sources via EEG
An important question arousing in the framework of electroencephalography (EEG) is the possibility to recognize, by means of a recorded surface potential, the number of activated areas in the brain. In the present paper, employing a homogeneous spherical conductor serving as an approximation of the...
Saved in:
Published in: | Journal of Applied Mathematics 2014, Vol.2014 (2014), p.480-487-145 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An important question arousing in the framework of electroencephalography (EEG) is the possibility to recognize, by means of a recorded surface potential, the number of activated areas in the brain. In the present paper, employing a homogeneous spherical conductor serving as an approximation of the brain, we provide a criterion which determines whether the measured surface potential is evoked by a single or multiple localized neuronal excitations. We show that the uniqueness of the inverse problem for a single dipole is closely connected with attaining certain relations connecting the measured data. Further, we present the necessary and sufficient conditions which decide whether the collected data originates from a single dipole or from numerous dipoles. In the case where the EEG data arouses from multiple parallel dipoles, an isolation of the source is, in general, not possible. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2014/232747 |