Loading…

Quantifying the primary and secondary effects of antimicrobial resistance on surgery patients: Methods and data sources for empirical estimation in England

Antimicrobial resistance (AMR) may negatively impact surgery patients through reducing the efficacy of treatment of surgical site infections, also known as the "primary effects" of AMR. Previous estimates of the burden of AMR have largely ignored the potential "secondary effects,"...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in public health 2022-08, Vol.10, p.803943-803943
Main Authors: Naylor, Nichola R, Evans, Stephanie, Pouwels, Koen B, Troughton, Rachael, Lamagni, Theresa, Muller-Pebody, Berit, Knight, Gwenan M, Atun, Rifat, Robotham, Julie V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antimicrobial resistance (AMR) may negatively impact surgery patients through reducing the efficacy of treatment of surgical site infections, also known as the "primary effects" of AMR. Previous estimates of the burden of AMR have largely ignored the potential "secondary effects," such as changes in surgical care pathways due to AMR, such as different infection prevention procedures or reduced access to surgical procedures altogether, with literature providing limited quantifications of this potential burden. Former conceptual models and approaches for quantifying such impacts are available, though they are often high-level and difficult to utilize in practice. We therefore expand on this earlier work to incorporate heterogeneity in antimicrobial usage, AMR, and causative organisms, providing a detailed decision-tree-Markov-hybrid conceptual model to estimate the burden of AMR on surgery patients. We collate available data sources in England and describe how routinely collected data could be used to parameterise such a model, providing a useful repository of data systems for future health economic evaluations. The wealth of national-level data available for England provides a case study in describing how current surveillance and administrative data capture systems could be used in the estimation of transition probability and cost parameters. However, it is recommended that such data are utilized in combination with expert opinion (for scope and scenario definitions) to robustly estimate both the primary and secondary effects of AMR over time. Though we focus on England, this discussion is useful in other settings with established and/or developing infectious diseases surveillance systems that feed into AMR National Action Plans.
ISSN:2296-2565
2296-2565
DOI:10.3389/fpubh.2022.803943