Loading…
Evaluation method of the least horizontal principal stress by logging data in anisotropic fast formations
For transverse isotropic fast formations, the evaluation method of the least horizontal principal stress by using logging data is an important unresolved issue. An innovative method is proposed to solve this problem by derivation of five independent stiffness coefficients (C11, C33, C44, C66 and C13...
Saved in:
Published in: | Petroleum exploration and development 2017-10, Vol.44 (5), p.789-796 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For transverse isotropic fast formations, the evaluation method of the least horizontal principal stress by using logging data is an important unresolved issue. An innovative method is proposed to solve this problem by derivation of five independent stiffness coefficients (C11, C33, C44, C66 and C13) in this kind of formation. Based on the functional relations between acoustic anisotropy coefficients and clay volume, and that between different stiffness coefficients, which are all approved by the assorted experiment data, an effective method is built to calculate the stiffness coefficients and the least horizontal stress of anisotropic fast formations. Successful applications in the Ordos Basin illustrate that the method is complementary to that based on the horizontal shear wave velocity which is only fit for slow formations, and is applicable to evaluating rock mechanical parameters of tight oil and gas reservoirs and selecting intervals for fracturing and testing oil. |
---|---|
ISSN: | 1876-3804 1876-3804 |
DOI: | 10.1016/S1876-3804(17)30089-7 |