Loading…

Robust Tracking as Constrained Optimization by Uncertain Dynamic Plant: Mirror Descent Method and ASG—Version of Integral Sliding Mode Control

A class of controlled objects is considered, the dynamics of which are determined by a vector system of ordinary differential equations with a partially known right-hand side. It is presumed that the state variables and their velocities can be measured. Designing a robust tracking controller under s...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2023-10, Vol.11 (19), p.4112
Main Authors: Nazin, Alexander, Alazki, Hussain, Poznyak, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-1b327d59963806f85269e28551d0c7877348eb76b26e74ab706a1d90dbaa2a4b3
cites cdi_FETCH-LOGICAL-c406t-1b327d59963806f85269e28551d0c7877348eb76b26e74ab706a1d90dbaa2a4b3
container_end_page
container_issue 19
container_start_page 4112
container_title Mathematics (Basel)
container_volume 11
creator Nazin, Alexander
Alazki, Hussain
Poznyak, Alexander
description A class of controlled objects is considered, the dynamics of which are determined by a vector system of ordinary differential equations with a partially known right-hand side. It is presumed that the state variables and their velocities can be measured. Designing a robust tracking controller under some constraints to admissible state variables is the research goal. This construction, which extends the results for the average subgradient technique (ASG), and is an update of the subgradient descent technique (SDM) and integral sliding mode (ISM) approach, is realized by using the Legendre–Fenchel transform. A two-link robot manipulator with three revolute joints, powered by individual PMDC motors, is presented as an illustrative example of the suggested approach implementation.
doi_str_mv 10.3390/math11194112
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8055d82145b74410b12124d82db3e8be</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772098515</galeid><doaj_id>oai_doaj_org_article_8055d82145b74410b12124d82db3e8be</doaj_id><sourcerecordid>A772098515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-1b327d59963806f85269e28551d0c7877348eb76b26e74ab706a1d90dbaa2a4b3</originalsourceid><addsrcrecordid>eNpNkc1uEzEQx1cIJKrSWx_AEldSbK-99nKLUloiNSrqB9fVeD2bOmzsYDuHcOIReugT8iQ4pKo6Poz1n5nfjGaq6pTRs7pu6ec15AfGWCsY42-qI865mqgSePvq_746SWlFi7Ws1qI9qh5vgtmmTO4i9D-dXxJIZBZ8yhGcR0uuN9mt3W_ILnhiduTe9xhziZHznYe168n3EXz-QhYuxhDJOaYefSYLzA_BEvCWTG8v__55-oEx7RlhIHOfcRlhJLejs_uei2Bx3zXHMH6o3g0wJjx59sfV_cXXu9m3ydX15Xw2vZr0gjZ5wkzNlZVt29SaNoOWvGmRaymZpb3SStVCo1GN4Q0qAUbRBphtqTUAHISpj6v5gWsDrLpNdGuIuy6A6_4LIS47iNn1I3aaSmk1Z0IaJQSjhnHGRVGsqVEbLKyPB9Ymhl9bTLlbhW30ZfyOa9XIhknOS9bZIWsJBer8EMqS-_Islj0Gj4Mr-lQpTlstmSwFnw4FfQwpRRxexmS029-8e33z-h8SIZ8a</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876561522</pqid></control><display><type>article</type><title>Robust Tracking as Constrained Optimization by Uncertain Dynamic Plant: Mirror Descent Method and ASG—Version of Integral Sliding Mode Control</title><source>Publicly Available Content Database</source><creator>Nazin, Alexander ; Alazki, Hussain ; Poznyak, Alexander</creator><creatorcontrib>Nazin, Alexander ; Alazki, Hussain ; Poznyak, Alexander</creatorcontrib><description>A class of controlled objects is considered, the dynamics of which are determined by a vector system of ordinary differential equations with a partially known right-hand side. It is presumed that the state variables and their velocities can be measured. Designing a robust tracking controller under some constraints to admissible state variables is the research goal. This construction, which extends the results for the average subgradient technique (ASG), and is an update of the subgradient descent technique (SDM) and integral sliding mode (ISM) approach, is realized by using the Legendre–Fenchel transform. A two-link robot manipulator with three revolute joints, powered by individual PMDC motors, is presented as an illustrative example of the suggested approach implementation.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math11194112</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Constraints ; Controllers ; convex constrained optimization ; Differential equations ; Mathematical optimization ; Mathematical research ; Optimization ; Ordinary differential equations ; Process controls ; Robot arms ; robot manipulator ; Robust control ; sliding mode ; Sliding mode control ; State variable ; subgradient descent method ; Tracking control ; trajectory tracking ; Variables</subject><ispartof>Mathematics (Basel), 2023-10, Vol.11 (19), p.4112</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-1b327d59963806f85269e28551d0c7877348eb76b26e74ab706a1d90dbaa2a4b3</citedby><cites>FETCH-LOGICAL-c406t-1b327d59963806f85269e28551d0c7877348eb76b26e74ab706a1d90dbaa2a4b3</cites><orcidid>0000-0002-1960-3624 ; 0000-0001-6155-7425 ; 0000-0002-5378-4545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2876561522/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2876561522?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Nazin, Alexander</creatorcontrib><creatorcontrib>Alazki, Hussain</creatorcontrib><creatorcontrib>Poznyak, Alexander</creatorcontrib><title>Robust Tracking as Constrained Optimization by Uncertain Dynamic Plant: Mirror Descent Method and ASG—Version of Integral Sliding Mode Control</title><title>Mathematics (Basel)</title><description>A class of controlled objects is considered, the dynamics of which are determined by a vector system of ordinary differential equations with a partially known right-hand side. It is presumed that the state variables and their velocities can be measured. Designing a robust tracking controller under some constraints to admissible state variables is the research goal. This construction, which extends the results for the average subgradient technique (ASG), and is an update of the subgradient descent technique (SDM) and integral sliding mode (ISM) approach, is realized by using the Legendre–Fenchel transform. A two-link robot manipulator with three revolute joints, powered by individual PMDC motors, is presented as an illustrative example of the suggested approach implementation.</description><subject>Algorithms</subject><subject>Constraints</subject><subject>Controllers</subject><subject>convex constrained optimization</subject><subject>Differential equations</subject><subject>Mathematical optimization</subject><subject>Mathematical research</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Process controls</subject><subject>Robot arms</subject><subject>robot manipulator</subject><subject>Robust control</subject><subject>sliding mode</subject><subject>Sliding mode control</subject><subject>State variable</subject><subject>subgradient descent method</subject><subject>Tracking control</subject><subject>trajectory tracking</subject><subject>Variables</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1uEzEQx1cIJKrSWx_AEldSbK-99nKLUloiNSrqB9fVeD2bOmzsYDuHcOIReugT8iQ4pKo6Poz1n5nfjGaq6pTRs7pu6ec15AfGWCsY42-qI865mqgSePvq_746SWlFi7Ws1qI9qh5vgtmmTO4i9D-dXxJIZBZ8yhGcR0uuN9mt3W_ILnhiduTe9xhziZHznYe168n3EXz-QhYuxhDJOaYefSYLzA_BEvCWTG8v__55-oEx7RlhIHOfcRlhJLejs_uei2Bx3zXHMH6o3g0wJjx59sfV_cXXu9m3ydX15Xw2vZr0gjZ5wkzNlZVt29SaNoOWvGmRaymZpb3SStVCo1GN4Q0qAUbRBphtqTUAHISpj6v5gWsDrLpNdGuIuy6A6_4LIS47iNn1I3aaSmk1Z0IaJQSjhnHGRVGsqVEbLKyPB9Ymhl9bTLlbhW30ZfyOa9XIhknOS9bZIWsJBer8EMqS-_Islj0Gj4Mr-lQpTlstmSwFnw4FfQwpRRxexmS029-8e33z-h8SIZ8a</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Nazin, Alexander</creator><creator>Alazki, Hussain</creator><creator>Poznyak, Alexander</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1960-3624</orcidid><orcidid>https://orcid.org/0000-0001-6155-7425</orcidid><orcidid>https://orcid.org/0000-0002-5378-4545</orcidid></search><sort><creationdate>20231001</creationdate><title>Robust Tracking as Constrained Optimization by Uncertain Dynamic Plant: Mirror Descent Method and ASG—Version of Integral Sliding Mode Control</title><author>Nazin, Alexander ; Alazki, Hussain ; Poznyak, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-1b327d59963806f85269e28551d0c7877348eb76b26e74ab706a1d90dbaa2a4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Constraints</topic><topic>Controllers</topic><topic>convex constrained optimization</topic><topic>Differential equations</topic><topic>Mathematical optimization</topic><topic>Mathematical research</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Process controls</topic><topic>Robot arms</topic><topic>robot manipulator</topic><topic>Robust control</topic><topic>sliding mode</topic><topic>Sliding mode control</topic><topic>State variable</topic><topic>subgradient descent method</topic><topic>Tracking control</topic><topic>trajectory tracking</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazin, Alexander</creatorcontrib><creatorcontrib>Alazki, Hussain</creatorcontrib><creatorcontrib>Poznyak, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazin, Alexander</au><au>Alazki, Hussain</au><au>Poznyak, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Tracking as Constrained Optimization by Uncertain Dynamic Plant: Mirror Descent Method and ASG—Version of Integral Sliding Mode Control</atitle><jtitle>Mathematics (Basel)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>11</volume><issue>19</issue><spage>4112</spage><pages>4112-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>A class of controlled objects is considered, the dynamics of which are determined by a vector system of ordinary differential equations with a partially known right-hand side. It is presumed that the state variables and their velocities can be measured. Designing a robust tracking controller under some constraints to admissible state variables is the research goal. This construction, which extends the results for the average subgradient technique (ASG), and is an update of the subgradient descent technique (SDM) and integral sliding mode (ISM) approach, is realized by using the Legendre–Fenchel transform. A two-link robot manipulator with three revolute joints, powered by individual PMDC motors, is presented as an illustrative example of the suggested approach implementation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math11194112</doi><orcidid>https://orcid.org/0000-0002-1960-3624</orcidid><orcidid>https://orcid.org/0000-0001-6155-7425</orcidid><orcidid>https://orcid.org/0000-0002-5378-4545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2023-10, Vol.11 (19), p.4112
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8055d82145b74410b12124d82db3e8be
source Publicly Available Content Database
subjects Algorithms
Constraints
Controllers
convex constrained optimization
Differential equations
Mathematical optimization
Mathematical research
Optimization
Ordinary differential equations
Process controls
Robot arms
robot manipulator
Robust control
sliding mode
Sliding mode control
State variable
subgradient descent method
Tracking control
trajectory tracking
Variables
title Robust Tracking as Constrained Optimization by Uncertain Dynamic Plant: Mirror Descent Method and ASG—Version of Integral Sliding Mode Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Tracking%20as%20Constrained%20Optimization%20by%20Uncertain%20Dynamic%20Plant:%20Mirror%20Descent%20Method%20and%20ASG%E2%80%94Version%20of%20Integral%20Sliding%20Mode%20Control&rft.jtitle=Mathematics%20(Basel)&rft.au=Nazin,%20Alexander&rft.date=2023-10-01&rft.volume=11&rft.issue=19&rft.spage=4112&rft.pages=4112-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math11194112&rft_dat=%3Cgale_doaj_%3EA772098515%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-1b327d59963806f85269e28551d0c7877348eb76b26e74ab706a1d90dbaa2a4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876561522&rft_id=info:pmid/&rft_galeid=A772098515&rfr_iscdi=true