Loading…
A Multimodal Robust Simultaneous Localization and Mapping Approach Driven by Geodesic Coordinates for Coal Mine Mobile Robots
Mobile robots in complex underground coal mine environments are still unable to achieve accurate pose estimation and the real-time reconstruction of scenes with absolute geographic information. Integrated terrestrial-underground localization and mapping technologies have still not been effectively d...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-11, Vol.15 (21), p.5093 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mobile robots in complex underground coal mine environments are still unable to achieve accurate pose estimation and the real-time reconstruction of scenes with absolute geographic information. Integrated terrestrial-underground localization and mapping technologies have still not been effectively developed. This paper proposes a multimodal robust SLAM method based on wireless beacon-assisted geographic information transmission and lidar-IMU-UWB elastic fusion mechanism (LIU-SLAM). In order to obtain the pose estimation and scene models consistent with the geographic information, the construction of two kinds of absolute geographic information constraints based on UWB beacons is proposed. An elastic multimodal fusion state estimation mechanism is designed based on incremental factor graph optimization. A tightly coupled lidar-inertial odometry is firstly designed to construct the lidar-inertial local transformation constraints, which are further integrated with the absolute geographic constraints by UWB anchors through a loosely coupled approach. Extensive field tests based on coal mine robots have been conducted in scenarios such as underground garages and underground coal mine laneways. The results show that the proposed geodesic-coordinate driven multimode robust SLAM method can obtain absolute localization accuracy within 25 cm with practical robustness and real-time performance in different underground application scenarios. The wireless beacon-assisted geodesic-coordinate transmission strategy can provide a plug-and-play customized solution for precise positioning and scene modeling in complex scenarios of various coal mine robot application. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15215093 |