Loading…

Sentiment Analysis of Students’ Feedback on E-Learning Using a Hybrid Fuzzy Model

It is crucial to analyze opinions about the significant shift in education systems around the world, because of the widespread use of e-learning, to gain insight into the state of education today. A particular focus should be placed on the feedback from students regarding the profound changes they e...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-12, Vol.13 (23), p.12956
Main Authors: Alzaid, Maryam, Fkih, Fethi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is crucial to analyze opinions about the significant shift in education systems around the world, because of the widespread use of e-learning, to gain insight into the state of education today. A particular focus should be placed on the feedback from students regarding the profound changes they experience when using e-learning. In this paper, we propose a model that combines fuzzy logic with bidirectional long short-term memory (BiLSTM) for the sentiment analysis of students’ textual feedback on e-learning. We obtained this feedback from students’ tweets expressing their opinions about e-learning. There were some ambiguous characteristics in terms of the writing style and language used in the collected feedback. It was written informally and not in adherence to standardized Arabic language writing rules by using the Saudi dialects. The proposed model benefits from the capabilities of the deep neural network BiLSTM to learn and also from the ability of fuzzy logic to handle uncertainties. The proposed models were evaluated using the appropriate evaluation metrics: accuracy, F1-score, precision, and recall. The results showed the effectiveness of our proposed model and that it worked well for analyzing opinions obtained from Arabic texts written in Saudi dialects. The proposed model outperformed the compared models by obtaining an accuracy of 86% and an F1-score of 85%.
ISSN:2076-3417
2076-3417
DOI:10.3390/app132312956